Categories: ObservingSpace Flight

Navigation for Spaceships Using X-ray Pulsars: Introducing XNAV

This could be the ultimate galactic GPS system: using pulsars as an interstellar navigation tool. Rapidly spinning neutron stars emit focused beams of X-rays into space and many, with accuracy as good as an atomic clock, have been mapped by astronomers. Now these pulsars may have a very important practical use. These interstellar beacons may be used to get a fix on the position of spacecraft and guide them around space…

Ever since the first X-ray pulsar was discovered in 1967 (called Centaurus X-3, the third X-ray source discovering in the constellation of Centaurus with a period of 4.84 seconds), astronomers have been busy mapping the distribution of these rapidly spinning stellar objects. Pulsars are the embodiment of a neutron star binary system; the neutron star strips the material from its stellar neighbour, accelerating the gas to about half the speed of light, blasting hot collimated X-ray emissions from its poles. As the pulsar spins, these beams of light act like a lighthouse, and should they be directed toward the Earth, we observe a highly accurate periodic flashing of X-rays.

At the beginning of this month, the IEEE/ION Position, Location and Navigation Symposium (PLANS) 2008 conference in Monterey, California featured two interesting concepts for the use of these highly accurate X-ray sources. The first proposal called “Noise Analysis for X-ray Navigation Systems” headed by John Hanson of CrossTrac Engineering, introduces a scaled-up version of terrestrial GPS, using pulsars rather than man-made satellites. The system is called X-ray navigation, or “XNAV” for short. Primarily focusing on space missions beyond Jupiter, XNAV would use the Solar System as the base co-ordinate and then measure the phase of the incoming X-ray emission from the mapped pulsars. As the X-ray pulses are so accurate, onboard systems could measure and compare the signal from multiple pulsar sources and automatically deduce the position of the spacecraft to a high degree of certainty. I suppose it would be an advanced 3D version of the traditional sextant as used by ships to measure the elevation of stars above the Earth’s horizon.

The second concept entitled “Online Time Delay Estimation of Pulsar Signals for Relative Navigation using Adaptive Filters“, is headed by Amir Emadzadeh at the UCLA Electrical Engineering Department. Emadzadeh suggests that the location of two spacecraft can be worked out if both ships are looking at the same, known pulsar. The periodic emission measured by both ships will have a differential time delay proportional to the distance between the ships. In addition, the UCLA group suggest a method to derive their relative inertial position by observing a distribution of X-ray sources throughout the cosmos.

These are very interesting concepts, but until we begin routinely venturing beyond the orbit of Jupiter I doubt we’ll see these ideas come to fruition any time soon…

Original source: Space.com
Additional info: IEEE/ION PLANS 2008 conference

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

16 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

22 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

1 day ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

2 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

2 days ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 days ago