As Meteorites Slice Through the Atmosphere, They’re Sculpted Into Cones | Universe Today
Categories: AstronomyMeteorites

As Meteorites Slice Through the Atmosphere, They’re Sculpted Into Cones

Since it first formed roughly 4.5 billion years ago, planet Earth has been subject to impacts by asteroids and plenty of meteors. These impacts have played a significant role in the geological history of our planet and even played a role in species evolution. And while meteors come in many shapes and sizes, scientists have found that many become cone-shaped once they enter our atmosphere.

The reason for this has remained a mystery for some time. But thanks to a recent study conducted by a team of researchers from New York University’s Applied Mathematics Lab have figured out the physics that leads to this transformation. In essence, the process involves melting and erosion that ultimately turns meteorities into the ideal shape as they hurl through the atmosphere.

The findings were reported in the journal Proceedings of the National Academy of Sciences (PNAS). The study was led by Leif Ristroph, an assistant professor in NYU’s Courant Institute of Mathematical Sciences (CIMS), and was assisted by Khunsa Amin and Kevin Hu (both of whom are NYU undergraduates) and Jinzi Huang – an NYU doctoral student at the time of the work.

A bright Perseid meteor over the UK on August 13, 2014. Credit and copyright: Richard Fleet.

In essence, the shapes of meteorites change drastically as a result of atmospheric flight. The process creates a ton of air friction, which in turn causes the surface of the meteor to melt, erode and become reshaped. While most become randomly shaped, a surprising 25 percent become “oriented meteorites” that look like perfect cones.

To be sure, there are many types of canonical meteors. Whereas some flip and tumble through the atmosphere and produce slender or narrow cones, others while the other rocks back and forth to broad cones. In between these, you have cones that fly perfectly straight through the atmosphere with their apex leading. As Ristroph explained in recent NYU news release:

“Amazingly, these ‘Goldilocks’ cones of the ‘just right’ angles exactly match the shapes of eroded clay resulting from our experiments and of actual conical meteorites… By showing how the shape of an object affects its ability to fly straight, our study sheds some light on this long-standing mystery about why so many meteorites that arrive on Earth are cone shaped.”

For the sake of their study, the team conducted several replicator experiments using clay objects attached to a rod. These served as their “mock meteorites” whose erosion patterns were examined as they were sculpted by water currents. Eventually, they were carved into cones that had the same shape as conical meteorites.

WT1190F striking the atmosphere over the Indian Ocean, where it broke apart into multiple fireballs against the blue sky. Credit: IAC/UAE Space Agency/NASA/ESA

The clay objects were eventually carved into cones that had the same angularity as conical meteorites. However, the researchers knew that truly simulate the right conditions, they needed more than objects that were fixed in place. When they fly through our atmosphere, meteorites are free to rotate, tumble and spin, thus raising the question – what allows them to keep a fixed orientation?

To answer this, the team conducted additional experiments in which they examined how cones of different shapes cones fared in running water. What the found was that narrow cones flip end over end while broader ones flutter, but the “goldilocks” cones managed to remain flying straight and true.

As Ristroph explained, these findings not only explain an ongoing mystery surrounding meteorites, but could also help with the study of extra-terrestrial bodies:

“These experiments tell an origin story for oriented meteorites: the very aerodynamic forces that melt and reshape meteoroids in flight also stabilize its posture so that a cone shape can be carved and ultimately arrive on Earth. This is another interesting message we’re learning from meteorites, which are scientifically important as ‘alien visitors’ to Earth whose composition and structure tell us about the universe.”

Further Reading: NYU, PNAS

Matt Williams @

Matt Williams is the Curator of Universe Today's Guide to Space. He is also a freelance writer, a science fiction author and a Taekwon-Do instructor. He lives with his family on Vancouver Island in beautiful British Columbia.

Recent Posts

A Commercial Satellite Just Docked with Another for the First Time, Opening Up a New Era in Orbital Maintenance

SpaceLogistics LLC has achieved a first: it's docked it's maintenance satellite, called MEV-1, with another satellite in order to extend…

3 hours ago

Astronomers Discover a Tiny New Temporary Moon for the Earth. Welcome to the Family 2020 CD3

Astronomers are increasingly interested in Near-Earth Objects, or NEOs. There are ongoing efforts to find them all and catalog them…

7 hours ago

Look down into a pit on Mars. The caved-in roof of a lava tube could be a good place to explore on the Red Planet

Want to look inside a deep, dark pit on Mars? The scientists and engineers from the NASA’s HiRISE Camera on…

7 hours ago

Future Astronauts Could Enjoy Fresh Vegetables From an Autonomous Orbital Greenhouse

A team from a Russian polytechnic university is working on an autonomous space module where fresh vegetables could be grown…

1 day ago

The Life of Katherine Johnson Shows that ‘Hidden Figures’ Are Important to History

NASA mathematician Katherine Johnson did more than just calculate rocket trajectories for early space missions. Her story, when it was…

1 day ago

Solar Storms Might Confuse Whale Navigation, and Make Them More Likely to Strand Themselves

The Gray Whale is the 10th largest creature alive today, and the 9 creatures larger than it are all whales,…

1 day ago