Categories: EnceladusHubbleSaturn

Until We Get Another Mission at Saturn, We’re Going to Have to Make Do with these Pictures Taken by Hubble

We can’t seem to get enough of Saturn. It’s the most visually distinct object in our Solar System (other than the Sun, of course, but it’s kind of hard to gaze at). The Cassini mission to Saturn wrapped up about a year ago, and since then we’re relying on the venerable Hubble telescope to satisfy our appetite for images of the ringed planet.

This image was captured a short time before opposition on June 27th. At that time, the Sun, Earth, and Saturn were all in alignment and the Sun lit Saturn up like a spotlight on a stage. Saturn was also at its closest point to Earth at the time, making the image that much more detailed and striking.

From left to right, the moons in the image are Dione, Enceladus, Tethys, Janus, Epimetheus and Mimas. An annotated version of the image reveals the tiny moons Janus and Epimetheus.

This composite image, taken by the NASA/ESA Hubble Space Telescope on 6 June 2018, shows the ringed planet Saturn with six of its 62 known moons. Image: NASA, ESA, A. Simon (GSFC) and the OPAL Team, and J. DePasquale (STScI)

The largest moon in the image is Dione, with a diameter of 1123 km.(698 mi), and the smallest is Epimetheus, the oddly-shaped moon with a diameter of 116 km. (72 mi.) Neither of those two are the most interesting of Saturn’s moons, though. That distinction goes to Enceladus, the ice moon.

Enceladus is of great interest because of the icy plumes shooting up through fissures in the moons icy surface. Cassini spotted them in 2005, near the moon’s south polar region. There are over 100 of these geysers on Enceladus. In 2014, follow-up observations by Cassini found evidence of a sub-surface ocean about 10km. (6.2mi.) thick at the south pole. Then, in 2018, Cassini detected complex macromolecular organics in the plumes. Since all known life here on Earth is based on these organic compounds, astrobiologists speculate that this warm sub-surface ocean might host life.

Cassini image of ice geysers on Enceladus. Image: (NASA/JPL/SSI)

The hexagon-shaped storm at Saturn’s north pole is also visible in the image. It’s a persistent feature on Saturn that Voyager 1 first spotted on Saturn during its flyby in 1981. Saturn was already an intriguing planet, but the hexagonal storm at the north pole adds to the intrigue.

These Hubble images are part of the Outer Planet Atmospheres Legacy (OPAL) project. OPAL focuses Hubble’s power on the outer planets, and the goal is to gather long-time baseline observations of them, in order to study their dynamic and evolving atmospheres.

Sources:

Evan Gough

Recent Posts

A magnetar has been discovered throwing off bizarre blasts of radiation. Is this where fast radio bursts come from?

Magnetars are the ultimate aggressive star: intense magnetic fields, massive outbursts, the works. We've known…

16 hours ago

Asteroids Somehow Migrated Past Jupiter During the Solar System’s Early History

In baseball, players receive a Gold Glove award if they show outstanding fielding play throughout…

1 day ago

An exoplanet has been found for the first time using radio telescopes

Astronomers have found an extrasolar planet around a main sequence star. Which isn't a big…

1 day ago

Neutron stars of different masses can make a real mess when they collide

When neutron stars collide, they go out with a tremendous bang, fueling an explosion up…

2 days ago

Why Can Black Hole Binaries Have Dramatically Different Masses? Multiple Generations of Mergers

Black hole mergers with very different masses tell us how small mergers can give rise…

2 days ago

A Globular Cluster was Completely Dismantled and Turned Into a Ring Around the Milky Way

An international team of astronomers discovered some surprising when studying a debris ring around our…

2 days ago