Categories: Astronomy

Astronomers Just Found 72 Stellar Explosions, but Don’t Know What’s Causing Them

A supernova is one of the most impressive natural phenomena in the Universe. Unfortunately, such events are often brief and transient, temporarily becoming as bright as an entire galaxy and then fading away. But given what these bright explosions – which occur when a star reaches the end of its life cycle – can teach us about the Universe, scientists are naturally very interested in studying them.

Using data from the Dark Energy Survey Supernova (DES-SN) program, a team of astronomers recently detected 72 supernovae, the largest number of events discovered to date. These supernovae were not only very bright, but also very brief – a finding which the team is still struggling to explain. The results of their study were presented on Tuesday, April 3rd, at the European Week of Astronomy and Space Science in Liverpool.

The team was led by Miika Pursiainen, a PhD researcher from the University of Southampton. For the sake of their study, the team relied on data from the 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). This telescope is part of the Dark Energy Survey, a global effort to map hundreds of millions of galaxies and thousands of supernovae in to find patterns int he cosmic structure that will reveal the nature of dark energy.

This image shows the incredibly distant and ancient supernova DES16C2nm. The supernova was discovered by the Dark Energy Survey. Image: Mat Smith and DES collaboration.

As Pursiainen commented in a recent Southampton news release:

“The DES-SN survey is there to help us understand dark energy, itself entirely unexplained. That survey then also reveals many more unexplained transients than seen before. If nothing else, our work confirms that astrophysics and cosmology are still sciences with a lot of unanswered questions!”

As noted, these events were very peculiar in that they had a similar maximum brightness compared to different types of supernove, they were visible for far less time. Whereas supernova typically last for several months or more, these transient supernovae were visible for about a week to a month. The events also appeared to be very hot, with temperatures ranging from 10,000 to 30,000 °C (18,000 to 54,000 °F).

They also vary considerably in size, ranging from being several times the distance between the Earth and the Sun – 150 million km, 93 million mi (or 1 AU) – to hundreds of times. However, they also appear to be expanding and cooling over time, which is what is expected from an event like a supernova. Because of this, there is much debate about the origin of these transient supernovae.

Artistic impression of a star going supernova, casting its chemically enriched contents into the universe. Credit: NASA/Swift/Skyworks Digital/Dana Berry

A possible explanation is that these stars shed a lot of material before they exploded, and that this could have shrouded them in matter. This material may then have been heated by the supernovae themselves, causing it to rise to very high temperatures. This would mean that in these cases, the team was seeing the hot clouds rather than the exploding stars themselves.

This certainly would explain the observations made by Pursiainen and his team, though a lot more data will be needed to confirm this. In the future, the team hopes to examine more transients and see how often they occur compared to more common supernovae. The study of this powerful and mysterious phenomenon will also benefit from the use of next-generation telescopes.

When the James Webb Space Telescope is deployed in 2020, it will study the most distant supernovae in the Universe. This information, as well as studies performed by ground-based observatories, is expected to not only shed light on the life cycle of stars and dark energy, but also on the formation of black holes and gravitational waves.

Further Reading: University of Southampton

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

New Technique for Spotting Dyson Rings Unveiled.

Dyson spheres and rings have always held a special fascination for me. The concept is…

1 hour ago

High Velocity Clouds Comprise Less of the Milky Way’s Mass Than We Thought

A survey of high velocity clouds in the galactic halo of the Milky Way finds…

3 hours ago

Has the Universe Been Designed to Support Life? Now We Have a Way to Test it!

The anthropic principle states that the fundamental parameters of the Universe such as the strength…

17 hours ago

Webb Sees a Supercluster of Galaxies Coming Together

As a species, we've come to the awareness that we're a minuscule part of a…

18 hours ago

Hubble Gets its Best Look At the First Quasar

The term quasar comes from quasi-stellar objects, a name that reflected our uncertainty about their…

22 hours ago

Do We Really Know What Becomes a Type Ia Supernova?

Type Ia supernovae are crucial to our understanding of cosmology. But we still don't fully…

1 day ago