Rosetta

There It Is! Philae Lander Found

The search is over, and looking at these images, no wonder it was so hard to find the little Philae lander!

The high-resolution camera on board the Rosetta spacecraft has finally spotted Philae “wedged into a dark crack on Comet 67P/Churyumov-Gerasimenko,” the ESA team said. They also said that now, seeing the lander’s orientation, it’s clear why establishing communications was so difficult following its landing on November 12, 2014.

Close-up of the Philae lander. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta, orbiting the comet and getting ready for its own demise/touchdown on 67P, focused its OSIRIS narrow-angle camera towards a few candidate sites on September 2, 2016 as the orbiter came just 2.7 km of the comet’s surface. Clearly visible in the zoomed in versions are the main body of the lander, along with two of its three legs.

“With only a month left of the Rosetta mission, we are so happy to have finally imaged Philae, and to see it in such amazing detail,” says Cecilia Tubiana of the OSIRIS camera team, the first person to see the images when they were downlinked from Rosetta on September 4.

Tubiana told Universe Today via email that Philae wasn’t too hard to find in the images. “Philae was in hiding in shadow, and as soon as we stretched the brightness to ‘see’ into the shadow, Philae was there!”

She added that nothing else about Philae’s condition has been revealed from the images so far.

The Philae lander was last seen after it first touched down at a region called Agilkia on the odd-shaped, two-lobed comet 67P. During its dramatic touchdown, the lander flew, landed, bounced and then repeated that process for more than two hours across the surface, with three or maybe four touchdowns. The harpoons that were to anchor Philae to the surface failed to fire, and scientists estimated the lander may have bounced as high as 3.2 kilometers (2 miles) before becoming wedged in the shadows of a cliff on the comet. After three days, Philae’s primary battery ran out of power and the lander went into hibernation, only to wake up again and communicate briefly with Rosetta in June and July 2015 as the comet came closer to the Sun and more power was available.

But after more than a year of silence, the Rosetta team announced in mid-August 2016 that they would no longer attempt communications with Philae.

Philae’s final location had been plotted but until yesterday, never actually seen by Rosetta’s cameras. Radio ranging data was used to narrow down the search to an area spanning a few tens of meters, and a number of potential candidate objects were identified in relatively low-resolution images taken from larger distances.

Philae close-up, labelled. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Compare some of the features of the cliff in the image above to this image taken by Philae of its surroundings:

The Philae lander captured a picture of a nearby cliff, nicknamed “Perihelion Cliff”, on the nucleus of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/Philae/CIVA.

“After months of work, with the focus and the evidence pointing more and more to this lander candidate, I’m very excited and thrilled that we finally have this all-important picture of Philae sitting in Abydos,” said ESA’s Laurence O’Rourke, who has been coordinating the search efforts over the last months at ESA, with the OSIRIS and SONC/CNES teams.

At 2.7 km, the resolution of the OSIRIS narrow-angle camera is about 5 cm/pixel, which is sufficient to reveal features of Philae’s 1 m-sized body and its legs.

“This wonderful news means that we now have the missing ‘ground-truth’ information needed to put Philae’s three days of science into proper context, now that we know where that ground actually is!” says Matt Taylor, ESA’s Rosetta project scientist.

An OSIRIS narrow-angle camera image taken on 2 September 2016 from a distance of 2.7 km in which Philae was definitively identified. The image has been processed to adjust the dynamic range in order to see Philae while maintaining the details of the comet’s surface. Philae is located at the far right of the image, just above center. The image scale is about 5 cm/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

The discovery comes less than a month before Rosetta descends to the comet’s surface. On September 30, the orbiter will be sent on a final one-way mission to investigate the comet from close up, including the open pits in a region called Ma’at, where it is hoped that critical observations will help to reveal secrets of the body’s interior structure.

“Now that the lander search is finished we feel ready for Rosetta’s landing, and look forward to capturing even closer images of Rosetta’s touchdown site,” adds Holger Sierks, principal investigator of the OSIRIS camera.

The Rosetta team said they would be providing more details about the search as well as more images in the near future.

Source: ESA

Nancy Atkinson

Nancy has been with Universe Today since 2004. She is the author of a new book on the Apollo program, "Eight Years to the Moon," which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible. Her first book, "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond.

Recent Posts

NASA is Building a Nuclear Reactor to Power Lunar and Martian Exploration!

NASA and the U.S. Dept. of Energy have come together to solicit design proposals for…

17 hours ago

InSight Peers Deep Below the Surface on Mars

The InSight lander has been on Mars, gathering data for a thousand days now, working…

2 days ago

Astronauts Took A Fly-around of the International Space Station. Here are Their Stunning Pictures

When astronauts left the International Space Station in early November to return home on the…

2 days ago

NASA Simulation Shows What Happens When Stars Get Too Close to Black Holes

What happens to a star when it strays too close to a monster black hole?…

2 days ago

The Parker Solar Probe is getting pelted by hypervelocity dust. Could they damage spacecraft?

There’s a pretty significant disadvantage to going really fast - if you get hit with…

3 days ago

The Decadal Survey is out! What new Missions and Telescopes are in the Works?

It’s that time again.  Once every ten years, the American astronomy community joins forces through…

3 days ago