SpaceX Set to Launch Stacked Pair of Electric Propulsion Comsats on June 15 – Watch Live

Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Less than three weeks after their last successful launch and landing attempt involving a Thai payload, SpaceX is set to continue the firms rapid fire pace of satellite deliveries to orbit with a new mission involving a stacked pair of all-electric propulsion commercial comsats that are due to liftoff tomorrow, Wednesday morning.

Working off a hefty back log of lucrative launch contracts SpaceX is targeting Wednesday, June 15 for the launch of the Boeing-built EUTELSAT 117 West B and ABS-2A satellites for Latin American and Asian customers from Cape Canaveral Air Force Station in Florida on an upgraded Falcon 9 rocket.

SpaceX is aiming to launch at the opening of Wednesday’s launch window at 10:29 a.m. EDT (2:29 UTC) which closes at 11:13 a.m. EDT.

Two Boeing built satellies named Eutelsat SA 117 West B and ABS 2A are due to launch on June 15, 2015 atop a SpaceX Falcon 9 rocket from Cape Canaveral, FL. Credit: Boeing

SpaceX most recently scored a stellar success with the double headed launch of Thaicom-8 and sea based first stage landing on May 27 – as I reported here from the Cape.

And Wednesday’s launch comes just 5 days after Saturday’s (June 11) launch from the Cape of the world’s most powerful rocket – the Delta 4 Heavy – which delivered a huge spy satellite to orbit for the NRO in support of US national defense.

Indeed what makes this flight especially interesting is that the satellites are based on Boeing’s 702SP series program and were the first all-electric propulsion satellites when Boeing introduced it in 2012, a Boeing spokesperson Joanna Climer told Universe Today.

The 229 foot-tall (70 meter) Falcon 9 will deliver the roughly 5000 pound commercial telecommunications satellites to a Geostationary Transfer Orbit (GTO) for Eutelsat based in Paris and Asia Broadcast Satellite of Bermuda and Hong Kong.

SpaceX Falcon 9 poised for launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

For the fourth time in a row, the spent first stage booster will again attempt to propulsively soft land on a platform at sea some nine minutes later.

You can watch the Falcon launch live on Wednesday via a special live webcast directly from SpaceX HQ in Hawthorne, Ca.

The SpaceX webcast will be available starting about 20 minutes before liftoff, at approximately 10:09 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a 44-minute long launch window that extends until 11:13 a.m. EDT on Wednesday, June 15.

The path to launch was cleared after SpaceX engineers successfully carried out a brief static fire test of the first stages engines with the rocket erect at pad 40. The customary test lasts a few seconds and was conducted headless – without the two satellites bolted on top.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The vertically stacked pair of comsats are “very similar, but not identical,” Climer told me.

They are already encased inside the Falcon 9 payload fairing and stacked in a Boeing-patented and customized interface configuration – as seen in the photo herein.

They were tested at the Boeing Satellite Development Center in El Segundo, Calif., to ensure they could withstand the rigors of the launch environment. They have a design lifetime of a minimum of 15 years.

“They vary slightly in mass, but have similar payload power. The satellite on top weighs less than the one on the bottom.”

The Eutelsat satellite is carrying a hosted payload for the FAA.

They will detached and separate from one another in space. The top satellite will separate first while the pair are still attached to the second stage. Then the bottom satellite will detach completing the spacecraft separation event.

They will be deployed at about 30 minutes and 35 minutes after liftoff.

Eutelsat 117 West B will provide Latin America with video, data, government and mobile services for Paris-based Eutelsat.

ABS 2A will distribute direct-to-home television, mobile and maritime communications services across Russia, India, the Middle East, Africa, Southeast Asia and the Indian Ocean region for Asia Broadcast Satellite of Bermuda and Hong Kong.

The satellites have no chemical thrusters. They will maneuver to their intended orbit entirely using a use xenon-based electric thruster propulsion system known as XIPS.

XIPS stands for xenon-ion propulsion system.

“XIPS uses the impulse generated by a thruster ejecting electrically charged particles at high velocities. XIPS requires only one propellant, xenon, and does not require any chemical propellant to generate thrust,” according to Boeing officials.

“XIPS is used for orbit raising and station-keeping for the 702SP series.”

Diagram of the Xenon propulsion system aboard the Boeing-built EUTELSAT 117 West B and ABS-2A satellites. Credit: Boeing

The ASDS drone ship landing platform known as “Of Course I Still Love You” or OCISLY was already dispatched several days ago.

It departed Port Canaveral for the landing zone located approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

As I witnessed and reported here first hand, the Thaicom-8 first stage arrived on OCISLY six days after the ocean landing, in a tilted configuration. It was craned off the drone ship onto a ground support cradle two days later.

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Up close view of landing legs at base of SpaceX Falcon 9 that launched on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Logo for EUTELSAT 117 West B and ABS-2A satellite mission launch. Credit: SpaceX
Ken Kremer

Dr. Ken Kremer is a speaker, research scientist, freelance science journalist (KSC area,FL) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calendars including Astronomy Picture of the Day, NBC, FOX, BBC, SPACE.com, Spaceflight Now, Science and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral, NASA Wallops, NASA Michoud/Stennis/Langley and on over 80 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

View Comments

  • My only (minor) issue w/this article is that this diagram of the ion engine makes it look like the neutralizer and ionization chamber are both spitting out the same types of particles. Like saying "Humans exhale oxygen" is strictly true, it's confusing, since the primary function of the "neutralizer" is to spit out electrons which "neutralize" the positively charged xenon ions.

    Maybe you could tie this use of ion engines in with NASA's Dawn mission in future articles? Maybe using the following link (among others) as further info on ion engine functionality & design: http://dawn.jpl.nasa.gov/DawnClassrooms/2_ion_prop/index.html.

    • Just to be clear, I do understand that this is Boeing's diagram, not Ken Kremer's. I'm sure Ken would have done a much better job if left to his own devices to create such a diagram. =D

Recent Posts

New Radio Telescope Is Going to Fly to the Far Side of the Moon to Listen to the Signals From the Early Universe

The phrase “silence is golden” is even more important for radio astronomers.  The sheer amount…

13 hours ago

Ancient Terrain on Venus Looks Like it Was Formed Through Volcanism

A new study shows that some of the oldest surface features on Venus (tesserae) were…

13 hours ago

The Newest Picture of Jupiter and Europa Captured by Hubble

The venerable Hubble Space Telescope has given us another gorgeous picture of Jupiter and its…

15 hours ago

Video Shows a Meteoroid Skipping off Earth’s Atmosphere

Here’s something we don’t see very often: an Earth-grazing meteoroid. On September 22, 2020, a…

18 hours ago

NASA’s New Budget for Artemis? $28 Billion

Just in time for the upcoming elections, NASA has presented Congress with the projected budget…

1 day ago

Beyond “Fermi’s Paradox” X: The Firstborn Hypothesis

In this latest instalment, we explore the possibility that humanity is an early arrival to…

2 days ago