Categories: Dark MatterJames Webb

Could the First Stars Have Been Powered by Dark Matter?

Early stars that began to form about 200 million years after the Big Bang were strange creatures. From observation, the earliest stars (formed from coalescing primordial gas clouds) were not dense enough to support fusion reactions in their cores. Something within the young suns was counteracting the collapsing gas clouds, preventing the core reactions from taking place. Yet, they still produced light, even in absence of nuclear processes. Could dark matter have had a part to play, fueling the stellar bodies and sparking early stars to life?

New research indicates that the energy generated by annihilating dark matter in the early universe may have powered the first stars. How? Well, the violent early universe will have had high concentrations of dark matter. Dark matter has the ability to annihilate when it comes into contact with other dark matter matter, it does not require anti-dark matter to annihilate. When “normal” matter collides with its anti-component (i.e. electron colliding with positron), annihilation occurs. Annihilation is a term often used to describe the energetic destruction of something. While this is true, the annihilation products from dark matter include huge amounts of energy to create neutrinos and “ordinary matter” such as protons, electrons and positrons. Dark matter annihilation energy therefore has the ability to condense and create the matter we see in the Universe today.

Dark matter particles are their own anti. When they meet, one-third of the energy goes into neutrinos, which escape, one-third goes into photons and the last third goes into electrons and positrons.” – Katherine Freese, Theoretical Physicist, University of Michigan.

Katherine Freese (University of Michigan), Douglas Spolyar (University of California, Santa Cruz) and Paolo Gondolo (University of Utah in Salt Lake City) believe the strange physics of the early “dark stars” may be attributed to dark matter. For a star to form from stellar gas cloud to a viable, burning star, it must cool first. This cooling allows the star to collapse so the gas is dense enough to kick-start nuclear reactions in the core. However, early stars appear to have some form of energy acting against the cooling and collapse of early stars, fusion shouldn’t be possible, and yet the stars still shine.

The group believe that early stars may have passed through two stages of development. As the gas clouds collapse, the stars go through a “dark matter phase”, generating energy and producing normal matter. As the phase progresses, dark matter will slowly be used up and converted into matter. As the star becomes sufficiently dense with matter, fusion processes take over, starting the “fusion phase”. Fusion in turn generates heavier elements (such as metals, oxygen, carbon and nitrogen) during the lifetime of the star. When the early stars’ fuel is used up, it will go supernova, exploding and distributing these heavy elements throughout space to form other stars. The “dark matter phase” appears only to have existed in the very first stars (a.k.a. “population three stars”); later stars are supported by fusion processes only.

However, this exciting new theory will have to wait until the James Webb Telescope goes into operation in 2013 before population three stars can be observed with any great accuracy. Light may then be shone on the processes powering the first “dark stars” of our early Universe.

Source: Physorg.com

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

3 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

8 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

22 hours ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

1 day ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

1 day ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 days ago