Categories: MercurySpace Flight

Most Advanced Ion Engines For 2013 BepiColombo Mission to Mercury

British scientists have been given the green light to begin the development of the most advanced ion engines ever to be used in space travel history. Set for launch in 2013, the European/Japanese BepiColombo mission to Mercury will be propelled to the Solar System’s innermost planet by advanced ion engines, with an efficiency equivalent to 17.8 million miles per gallon. This is one very cheap spaceship to fly!

We are currently being dazzled and amazed at the sheer detail of the images being transmitted by NASA’s MESSENGER mission flyby of the tiny planet Mercury. While we watch and wait for MESSENGER to eventually establish an orbit (insertion should occur in the spring of 2011), UK scientists, working with the ESA and Astrium (Europe’s largest space contractor), are hard at work designing the engines for the next big mission to the inner Solar System: BepiColombo. The mission consists of two orbiters: the Mercury Planetary Orbiter (MPO), to carry out mapping tasks over the planet, and the Mercury Magnetospheric Orbiter (MMO), to characterize the planets mysterious magnetosphere. The two craft will travel as one for the 6 year journey to Mercury, but separate at orbital insertion.

Although BepiColombo will use the gravitational pull of the Moon, Earth, Venus and then Mercury to actually get it to its destination, a large amount of energy is required to slow the craft down, countering the Sun’s gravity. Without an engine to thrust against BepiColombo‘s decent into the huge gravitational pull of the Sun, the mission would be doomed to overshoot Mercury and fall to a fiery end. This is where the ion engines come in.

Ion engines have been used in space missions before (such as the SMART-1 mission to the Moon in 2003), but the new generation engines currently undergoing development for the next Mercury mission will be far more efficient while providing sufficient thrust. Better efficiency means less fuel. Less fuel means less mass and volume, saving on launch cost and allowing more room for scientific instrumentation.

Ion engines work by channeling electrically charged particles (ions) through an electric field. Doing this accelerates the ions to high velocities. Each particle has a mass (albeit tiny), so each particle also carries a momentum when fired from the engine. Shoot enough particles out of the engine and you produce a thrust the spacecraft can use to accelerate or (in the case of BepiColombo) slow down. Ion engines do have a drawback. Although they are fuel efficient, the thrust can be small, so missions can take longer to complete; time must be allowed for the long-term thrust to have an effect on the velocity of the spacecraft. However, this shortfall for ion propulsion won’t deter space scientists from using this new technology, as the pros definitely outweigh the cons.

So, we can now look forward to over a decade of exploration of Mercury by MESSENGER and BepiColombo, one of the most uncharted and mysterious planets to orbit the Sun.

Source: Telegraph.co.uk

Ian O'Neill

[Follow me on Twitter (@astroengine)] [Check out my space blog: Astroengine.com] [Check out my radio show: Astroengine Live!] Hello! My name is Ian O'Neill and I've been writing for the Universe Today since December 2007. I am a solar physics doctor, but my space interests are wide-ranging. Since becoming a science writer I have been drawn to the more extreme astrophysics concepts (like black hole dynamics), high energy physics (getting excited about the LHC!) and general space colonization efforts. I am also heavily involved with the Mars Homestead project (run by the Mars Foundation), an international organization to advance our settlement concepts on Mars. I also run my own space physics blog: Astroengine.com, be sure to check it out!

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

50 mins ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

56 mins ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

2 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

2 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

2 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

23 hours ago