Lunar orbit is getting to be a busy place, with several different countries sending spacecraft to the moon. Currently orbiting the Moon are Japan’s Kaguya (also known as SELENE) spacecraft, which has been sending back 3-D movies of the lunar surface, and China’s Chang-e 1, which will gather information on the Moon’s chemical composition with its various cameras, spectrometers and other scientific equipment. In addition, two new missions to the moon will launch this year: India’s Chandrayaan-1 and NASA’s Lunar Reconnaissance Orbiter.
Chandrayaan, which means “journey to the moon” in Hindi, will study the moon at many wavelengths, from X-ray, visible and near-infrared to microwave. It will orbit the moon at just 100 km above the surface. The mission is scheduled to launch on April 9.
“The low orbit will give us really high resolution data,” says Detlef Koschny, Chandrayaan project scientist. The principal mission objective is to map the Moon’s surface in unprecedented detail. Current lunar maps show detail from 30 – 100 meters across. Chandrayaan will produce maps with a resolution of between 5 and 10 meters across the whole surface of the moon.
The European Space Agency (ESA) is collaborating with Indian Space Research Organization (ISRO) for the Chandrayaan-1 mission. A Compact Imaging X-ray Spectrometer will produce x-ray spectroscopic mapping of the moon, and the Infrared Spectrometer will observe the Moon’s chemical composition. Another ESA instrument is the Sub-keV Atom Reflecting Analyzer, which will study the interaction between electrically charged particles from the solar wind and Moon’s surface.
Eight other instruments complete the suite of science instruments, including a 29-kg landing probe which will be dropped onto the Moon’s surface at the beginning of the mission to conduct investigations.
Meanwhile, the Lunar Reconnaissance Orbiter (LRO) is currently undergoing testing at Goddard Spaceflight Center to get ready for its launch on October 28 of this year. LRO will spend at least a year mapping the surface of the moon. Data from the orbiter will help NASA select safe landing sites for astronauts, identify lunar resources and study how the moon’s environment will affect humans.
Engineers at Goddard are building the orbiter and testing spacecraft components to ready them for the harsh environment of space. After a component or entire subsystem is qualified, it is integrated into the LRO spacecraft. The core suite of avionics for the orbiter is assembled and undergoing system tests.
“This is a major milestone for the mission,” said Craig Tooley, LRO project manager at Goddard. “Our team has been working nearly around the clock to get us to this point. Reaching this milestone keeps us on the path to sending LRO to the moon later this year.”
Once fully integrated, the spacecraft will ship to NASA’s Kennedy Space Center, Florida in August in preparation for launch. The orbiter and the Lunar Crater Observation and Sensing Satellite (LCROSS) will launch aboard an Atlas V rocket. LCROSS will study the poles of the moon to confirm the presence or absence of water ice in a permanently shadowed craters. The trip to the moon for the spacecraft will take approximately four days. The Lunar Reconnaissance Orbiter initially will enter an elliptical orbit, also called the commissioning orbit. Once moved into its final orbit, a circular polar orbit approximately 31 miles above the moon, the spacecraft’s instruments will map the lunar surface.
Original News Sources: Chandrayaan Press Release, LRO press release
As we approach the peak of Solar Cycle 25, we can expect more and more…
Physical infrastructure on the Moon will be critical to any long-term human presence there as…
It’s not long before a conversation about space travel is likely to turn to the…
A new sungrazing comet with potential may grace our skies in late October.
Astronomers want new ways to measure distance in the Universe, working to calculate its rate…
Since the 1970s, astronomers have observed that supermassive black holes (SMBHs) reside at the centers…