Categories: Commercial Space

Antares Orb-3 Rocket Explosion and Frightening Incineration Captured by Up Close Launch Pad Videos/Photos: Pt. 2

Video Caption: This up close launch pad camera view is a time lapse sequence of images showing the sudden catastrophic explosion of Orbital Sciences Antares Orb 3 rocket seconds after blastoff and destructive incineration as it plummets into a hellish inferno at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – Today/AmericaSpace/Zero-G News.
Story and images expanded

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff on Oct. 28, 2014, the Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure as one of the Soviet-era first stage engines exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the doomed Orb-3 mission to the International Space Station (ISS).

Although I witnessed and photographed the launch failure from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away, myself and a small group of space journalists working together from Universe Today, AmericaSpace, and Zero-G News had also placed sound activated cameras directly at the launch pad to capture the most spectacular up close views for what we all expected to be a “nominal” launch. Our imagery had been impounded by accident investigators – until being released to us now.

Now in part 2 of this exclusive series of video and photos our team can show you the terrible fate suffered by Antares after its destructive descent and frightening incineration as it was consumed by a hellish inferno.

My time lapse video above clearly shows the explosion and incendiary descent of Antares into a mammoth fireball.

As I reported in Part 1, all of our team’s cameras and image cards were impounded for nearly a month by Orbital’s official and independent Accident Investigation Board (AIB) that was assembled quickly in the aftermath of the Antares launch failure disaster and charged with determining the root cause of the launch failure.

The videos and photos captured on our image cards were used as evidence and scrutinized by the investigators searching for clues as to the cause and have only just been returned to us in the past few days.

One image clearly shows that the south side engine nozzle of the AJ26 first stage engine was intact and had shut down after the initial explosion and during the plummet. Therefore it was the north side engine that blew up and led to the launch failure. See my up close AJ26 engine photo below.

Video Caption: AmericaSpace and Zero-G News video compilation of four cameras surrounding the launch pad to capture liftoff. The video runs through each at full speed before slowing down to give viewers a slow motion replay of the explosion. One of the cameras was right in the middle of the fireball, with chunks of broken rocket showering down around. CREDITS: Mike Barrett / Jeff Seibert / Matthew Travis / Elliot Severn / Peter Greenwood for and

Similar launch pad photos taken by NASA and Orbital Sciences cameras have not been publicly released and may not be released for some time to come.

The videos and images collected here are the work of my colleagues Matthew Travis, Elliot Severn, Alex Polimeni, Charles Twine, Jeff Seibert, Mike Barrett, and myself, and show exquisite, heretofore unreleased, views of the explosion, fireball, and wreckage from various positions all around the launch pad.

Our remote cameras were placed all around the Antares pad OA at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, VA, and somehow miraculously survived the rocket’s destruction as it plunged to the ground very near and just north of the seaside launch pad.

A turbopump failure in one of the rocket’s Soviet-era first stage engines has been identified as the most likely cause of the Antares’ destruction according to official statements from David Thompson, Orbital’s Chairman and Chief Executive Officer.

The AJ26 engines were originally manufactured some 40 years ago in the then Soviet Union as the NK-33.

They were refurbished and “Americanized” by Aerojet Rocketdyne.

“While still preliminary and subject to change, current evidence strongly suggests that one of the two AJ26 main engines that powered Antares’ first stage failed about 15 seconds after ignition. At this time, we believe the failure likely originated in, or directly affected, the turbopump machinery of this engine, but I want to stress that more analysis will be required to confirm that this finding is correct,” said Thompson.

Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer –
Close up view of Antares’ descent into a hellish inferno shows the south side first stage engine intact after the north side engine at the base of Orbital Sciences’ Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer –

Overall this was the 5th Antares launch using the AJ26 engines.

Antares was carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer –

It was the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo was loaded on board compared to earlier flights. That was enabled by using the more powerful ATK CASTOR 30XL engine to power the second stage for the first time.

The astronauts and cosmonauts depend on a regular supply train from the ISS partners to kept it afloat and productive on a 24/7 basis.

The Orbital-3, or Orb-3, mission was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

Examine the video and photo gallery herein.

Orbital Sciences Antares rocket explodes into a fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer –

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Pre-launch seaside panorama of Orbital Sciences Corporation Antares rocket at the NASA’s Wallops Flight Facility launch pad on Oct 26 – 2 days before the Orb-3 launch failure on Oct 28, 2014. Credit: Ken Kremer –
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer –
Remote cameras set up around launch pad 0A at the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility in Virginia captured incredible up-close views of an Orbital Sciences Corporation Antares rocket exploding seconds after liftoff several weeks ago. The mission was to deliver the company’s Orb-3 Cygnus spacecraft to deliver supplies and experiments to the orbiting International Space Station. Photo Credits: Elliot Severn / Matthew Travis / Mike Barrett / Jeff Seibert for Zero-G News and AmericaSpace
Up Close Launch Pad remote camera photographers during prelaunch setup for Orb-3 mission at NASA Wallops launch pad. Credit: Ken Kremer –
Ken Kremer

Dr. Ken Kremer is a speaker, research scientist, freelance science journalist (KSC area,FL) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calendars including Astronomy Picture of the Day, NBC, FOX, BBC,, Spaceflight Now, Science and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral, NASA Wallops, NASA Michoud/Stennis/Langley and on over 80 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - Follow Ken on Facebook and Twitter

Recent Posts

How Startups on Earth Could Blaze a Trail for Cities on Mars

If future explorers manage to set up communities on Mars, how will they pay their…

2 hours ago

This Planet-Forming Disk has More Water Than Earth’s Oceans

Astronomers have detected a large amount of water vapour in the protoplanetary disk around a…

2 hours ago

When an Object Like ‘Oumuamua Comes Around Again, We Could be Ready With an Interstellar Object Explorer (IOE)

On October 19th, 2017, astronomers with the Pann-STARRS survey observed an Interstellar Object (ISO) passing…

3 hours ago

Astronomers Build a 3D Map of Dust Within Thousands of Light-Years

If you explore the night sky it won’t be long before you realise there is…

5 hours ago

How We Get Planets from Clumping Dust

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky…

5 hours ago

A Nova in the Making: Will T Coronae Borealis Pop in 2024?

If predictions are correct, a key outburst star could put on a show in early…

6 hours ago