Categories: Astronomy

Gemini Counts Up the Dark Matter in NGC 3379

NGC 3379. Image credit: NASA/University of Michigan. Click to enlarge
Using Gemini observations of globular clusters in NGC 3379 (M105), a team led by PhD student Michael Pierce and Prof. Duncan Forbes of Swinburne University in Australia, have found evidence for normal quantities of dark matter in the galaxy??bf?s dark halo. This is contrary to previous observations of planetary nebulae that indicated a paucity of dark matter in the galaxy.

The observations of 22 globular clusters in the Leo Group elliptical galaxy were made using the Gemini Multi-Object Spectrograph (GMOS) on Gemini North in early 2003. The data were obtained in the GMOS multi-slit mode with exposures of 10 hours on-source at a spectral resolution of FWHM ~4Aa over an effective wavelength range of 3800A-6660A. The final spectra have a signal-to-noise ratio of 18-58/A at 5000 A. The spectroscopic data allowed the team to derive ages, metallicities and α-element abundance ratios for the sample of globular clusters. All of the globular clusters were found to be >~ 10 Gyr, with a wide range of metallicities. A trend of decreasing α-element abundance ratio with increasing metallicity is also identified.

Most significantly, including 14 extra globular clusters from Puzia, et al. (2004), the projected velocity dispersion of the globular cluster system was found to be constant with radius from the galaxy center, indicating significant dark matter at large radii in its halo. This result is in stark contrast to the ??bf?No/Low Dark Matter??bf? interpretation by Romanowsky, et al. (2003) in the journal Science using observations of planetary nebula that indicated a decrease in the velocity dispersion profile with radius.

Reconciling the two velocity dispersion profiles is possible. Dekel, et al. (2005) recently showed that stellar orbits in the outer regions of merger-remnant elliptical galaxies are elongated and that declining planetary nebula velocity dispersions do not necessarily imply a dearth of dark matter.

Another possibility the authors suggest is that NGC 3379 could be a face-on S0 galaxy (as originally suggested by Capaccioli, et al. 1991). If a significant fraction of the planetary nebulae belong to the disk, this could suppress the line-of-sight velocity dispersion of the planetary nebulae relative to that of the globular clusters that lie in a more spherical halo.

Original Source: Gemini Observatory

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

4 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

6 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

6 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 day ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

1 day ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

1 day ago