How Do You Find The Signs of Life On Alien Planets?

One big challenge in astronomy is everything is so darn far away. This makes it hard to see the signs of life in planets, which are usually but tiny dots of light using the telescope technology we have today.

There are signs in Earth’s atmosphere that life is on the surface — methane from microbes, for example — and already scientists have years of research concerning ideas to find “biomarkers” on other planets. A new model focuses on a theoretical Earth-sized planet orbiting a red dwarf star, where it is believed biomarkers would be easier to find because these stars are smaller and fainter than that of the sun.

“We developed computer models of exoplanets which simulate the abundances of different biomarkers and the way they affect the light shining through a planet’s atmosphere,” stated Lee Grenfell, who is with the German Aerospace Center (DLR) institute of planetary science.

Preliminary work has already been done to find chemicals in the planet’s atmosphere (by looking at how they affect light that pass through the chemicals) particularly on large exoplanets that are close to their star (sometimes called “hot Jupiters“). Signs of life would be found through a similar process, but would be much fainter.

Artist’s impression of a red dwarf (courtesy NASA)

The research team constructed a model of a planet similar to Earth, at different orbits and distances from a red dwarf stars. Their work shows a sort of “Goldilocks” effect (or, a condition that is “just right”) to find ozone when the ultraviolet radiation falls into the medium of a given range. If it is too high, the UV heats the middle atmosphere and obliterates the biomarker signal. Too low UV makes the signal very hard to find.

“We find that variations in the UV emissions of red-dwarf stars have a potentially large impact on atmospheric biosignatures in simulations of Earth-like exoplanets. Our work emphasizes the need for future missions to characterise the UV emissions of this type of star,” said Grenfell.

The research has plenty of limitations, he added. We don’t know what alien life would look like, we don’t know if planets near red dwarfs are a good place to search, and even if we found a signal that looked like life, it could have come from another process. Still, Grenfell’s team expects the model is a good basis on which to continue asking the question: is life really out there?

The research has been submitted to the journal Planetary and Space Science.

Source: European Planetary Science Conference

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Could Martian atmospheric samples teach us more about the Red Planet than surface samples?

NASA is actively working to return surface samples from Mars in the next few years,…

6 hours ago

Black Holes are Firing Beams of Particles, Changing Targets Over Time

Black holes seem to provide endless fascination to astronomers. This is at least partly due…

18 hours ago

Another Giant Antarctic Iceberg Breaks Free

On May 20th, 2024, an iceberg measuring 380 square kilometers (~147 mi2) broke off the…

1 day ago

Fish are Adapting to Weightlessness on the Chinese Space Station

Four zebrafish are alive and well after nearly a month in space aboard China's Tiangong…

2 days ago

Marvel at the Variety of Planets Found by TESS Already

The hunt for new exoplanets continues. On May 23rd, an international collaboration of scientists published…

2 days ago

NASA is Practicing for the Moon With Partial Space Suits

In just a few short years, NASA hopes to put humans back on the lunar…

2 days ago