Categories: Astronomy

Solar Nebula Lasted 2 Million Years

Image credit: William K. Hartmann/PSI
The oxygen and magnesium content of some of the oldest objects in the universe are giving clues to the lifetime of the solar nebula, the mass of dust and gas that eventually led to the formation of our solar system.
Specimen from the Allende Meteorite

By looking at the content of chondrules and calcium aluminum-rich inclusions (CAIs), both components of the primitive meteorite Allende, Lab physicist Ian Hutcheon, with colleagues from the University of Hawaii at Manoa, the Tokyo Institute of Technology and the Smithsonian Institution, found that the age difference between the two fragments points directly to the lifetime of the solar nebula.

CAIs were formed in an oxygen-rich environment and date to 4.567 billion years old, while chondrules were formed in an oxygen setting much like that on Earth and date to 4.565 billion, or less, years old.

?Over this span of about two million years, the oxygen in the solar nebula changed substantially in its isotopic makeup,? Hutcheon said. ?This is telling us that oxygen was evolving fairly rapidly.?

The research appears in the April 21 edition of the journal Nature.

One of the signatures of CAIs is an enrichment of the isotope Oxygen 16 (O-16). An isotope is a variation of an element that is heavier or lighter than the standard form of the element because each atom has more or fewer neutrons in its nucleus. The CAIs in this study are enriched with an amount of O-16 4 percent more than that found on Earth. And, while 4 percent may not sound like much, this O-16 enrichment is an indelible signature of the oldest solar system objects, like CAIs. CAIs and chondrules are tens of millions of years older than more modern objects in the solar system, such as planets, which formed about 4.5 billion years ago.

?By the time chondrules formed, the O-16 content changed to resemble what we have on Earth today,? Hutcheon said.

In the past, the estimated lifetime of the solar nebula ranged from less than a million years to ten million years. However, through analysis of the mineral composition and oxygen and magnesium isotope content of CAIs and chondrules, the team was able to refine that lifespan to roughly two million years.

?In the past the age difference between CAIs and chondrules was not well-defined,? Hutcheon said. ?Refining the lifetime of the solar nebula is quite significant in terms of understanding how our solar system formed.?

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Original Source: LLNL News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

41,000 Years Ago Earth’s Shield Went Down

Earth is naked without its protective barrier. The planet's magnetic shield surrounds Earth and shelters…

35 mins ago

Fall Into a Black Hole With this New NASA Simulation

No human being will ever encounter a black hole. But we can't stop wondering what…

51 mins ago

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

9 hours ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

21 hours ago

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

1 day ago

China is Going Back to the Moon Again With Chang'e-6

On Friday, May 3rd, the sixth mission in the Chinese Lunar Exploration Program (Chang'e-6) launched…

1 day ago