Lighting Up the Moon’s Permanently Shadowed Craters

This illustration shows a solar reflector on a crater rim could deliver solar energy where it's needed in the bottom of permanently shadowed polar craters on the Moon. Image Credit: Texas A&M Engineering

The Moon’s polar regions are home to permanently shadowed craters. In those craters is ancient ice, and establishing a presence on the Moon means those water ice deposits are a valuable resource. Astronauts will likely use solar energy to work in these craters and harvest water, but the Sun never shines there.

What’s the solution? According to one team of researchers, a solar collector perched on the crater’s rim.

Continue reading “Lighting Up the Moon’s Permanently Shadowed Craters”

Here’s Where China’s Sample Return Mission is Headed

Chang'e-6 will land in the Apollo Basin inside the much larger SPA basin. Image Credit: Zeng et al. 2023.

Humanity got its first look at the other side of the Moon in 1959 when the USSR’s Luna 3 probe captured our first images of the Lunar far side. The pictures were shocking, pointing out a pronounced difference between the Moon’s different sides. Now China is sending another lander to the far side.

This time, it’ll bring back a sample from this long-unseen domain that could explain the puzzling difference.

Continue reading “Here’s Where China’s Sample Return Mission is Headed”

Why Hot Jupiters Spiral into Their Stars

Illustration showing one of the darkest known exoplanets - a hot Jupiter as black as fresh asphalt - orbiting a star like our Sun. The day side of the planet, called WASP-12b, eats light rather than reflects it into space. Something is pulling this planet into its star. Credit: NASA, ESA, and G. Bacon (STScI)
Illustration showing one of the darkest known exoplanets - a hot Jupiter as black as fresh asphalt - orbiting a star like our Sun. The day side of the planet, called WASP-12b, eats light rather than reflects it into space. Something is pulling this planet into its star. Credit: NASA, ESA, and G. Bacon (STScI)

Exoplanets are a fascinating astronomy topic, especially the so-called “Hot Jupiters”. They’re overheated massive worlds often found orbiting very close to their stars—hence the name. Extreme gravitational interactions can tug them right into their stars over millions of years. However, some hot Jupiters appear to be spiraling in faster than gravity can explain.

Continue reading “Why Hot Jupiters Spiral into Their Stars”

Does the Milky Way Have Too Many Satellite Galaxies?

Large Magellanic Cloud. Credit: ESA

The Large and Small Magellanic Clouds are well known satellite galaxies of the Milky Way but there are more. It is surrounded by at least 61 within 1.4 million light years (for context the Andromeda Galaxy is 2.5 million light years away) but there are likely to be more. A team of astronomers have been hunting for more companions using the Subaru telescope and so far, have searched just 3% of the sky. To everyone’s surprise they have found nine previously undiscovered satellite galaxies, far more than expected. 

Continue reading “Does the Milky Way Have Too Many Satellite Galaxies?”

Astronomers are on the Hunt for Dyson Spheres

Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45
Artist's impression of a Dyson Sphere. The construction of such a massive engineering structure would create a technosignature that could be detected by humanity. Credit: SentientDevelopments.com/Eburacum45

There’s something poetic about humanity’s attempt to detect other civilizations somewhere in the Milky Way’s expanse. There’s also something futile about it. But we’re not going to stop. There’s little doubt about that.

One group of scientists thinks that we may already have detected technosignatures from a technological civilization’s Dyson Spheres, but the detection is hidden in our vast troves of astronomical data.

Continue reading “Astronomers are on the Hunt for Dyson Spheres”

We Need to Consider Conservation Efforts on Mars

Curiosity at work firing a laser on Mars. This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration. Credit: NASA

Astrobiology is the field of science that studies the origins, evolution, distribution, and future of life in the Universe. In practice, this means sending robotic missions beyond Earth to analyze the atmospheres, surfaces, and chemistry of extraterrestrial worlds. At present, all of our astrobiology missions are focused on Mars, as it is considered the most Earth-like environment beyond our planet. While several missions will be destined for the outer Solar System to investigate “Ocean Worlds” for evidence of life (Europa, Ganymede, Titan, and Enceladus), our efforts to find life beyond Earth will remain predominantly on Mars.

If and when these efforts succeed, it will have drastic implications for future missions to Mars. Not only will great care need to be taken to protect Martian life from contamination by Earth organisms, but precautions must be taken to prevent the same from happening to Earth (aka. Planetary Protection). In a recent study, a team from the University of New South Wales (UNSW) in Sydney, Australia, recommends that legal or normative frameworks be adopted now to ensure that future missions do not threaten sites where evidence of life (past or present) might be found.

Continue reading “We Need to Consider Conservation Efforts on Mars”

Roman Space Telescope Will Be Hunting For Primordial Black Holes

This artist's illustration shows what primordial black holes might look like. In reality, the black holes would struggle to form accretion disks. (But without them it would just be an illustration of black space.) Image Credit: NASA’s Goddard Space Flight Center

When astrophysicists observe the cosmos, they see different types of black holes. They range from gargantuan supermassive black holes with billions of solar masses to difficult-to-find intermediate-mass black holes (IMBHs) all the way down to smaller stellar-mass black holes.

But there may be another class of these objects: primordial black holes (PBHs) that formed in the very early Universe. If they exist, the Nancy Grace Roman Space Telescope should be able to spot them.

Continue reading “Roman Space Telescope Will Be Hunting For Primordial Black Holes”

What Deadly Venus Can Tell Us About Life on Other Worlds

Earth and Venus. Why are they so different and what do the differences tell us about rocky exoplanet habitability? Image Credit: NASA

Even though Venus and Earth are so-called sister planets, they’re as different as heaven and hell. Earth is a natural paradise where life has persevered under its azure skies despite multiple mass extinctions. On the other hand, Venus is a blistering planet with clouds of sulphuric acid and atmospheric pressure strong enough to squash a human being.

But the sister thing won’t go away because both worlds are about the same mass and radius and are rocky planets next to one another in the inner Solar System. Why are they so different? What do the differences tell us about our search for life?

Continue reading “What Deadly Venus Can Tell Us About Life on Other Worlds”

A Nebula that Extends its Hand into Space

This cloudy, ominous structure is CG 4, a cometary globule nicknamed ‘God’s Hand’. CG 4 is one of many cometary globules present within the Milky Way, and how these objects get their distinct form is still a matter of debate among astronomers. Image Credit: CTIO/NOIRLab/DOE/NSF/AURA Image Processing: T.A. Rector (University of Alaska Anchorage/NSF’s NOIRLab), D. de Martin & M. Zamani (NSF’s NOIRLab)

The Gum Nebula is an emission nebula almost 1400 light-years away. It’s home to an object known as “God’s Hand” among the faithful. The rest of us call it CG 4.

Many objects in space take on fascinating, ethereal shapes straight out of someone’s psychedelic fantasy. CG4 is definitely ethereal and extraordinary, but it’s also a little more prosaic. It looks like a hand extending into space.

Continue reading “A Nebula that Extends its Hand into Space”

41,000 Years Ago Earth’s Shield Went Down

An illustration of Earth's magnetic field. Image Credit: ESA/ATG medialab

Earth is naked without its protective barrier. The planet’s magnetic shield surrounds Earth and shelters it from the natural onslaught of cosmic rays. But sometimes, the shield weakens and wavers, allowing cosmic rays to strike the atmosphere, creating a shower of particles that scientists think could wreak havoc on the biosphere.

This has happened many times in our planet’s history, including 41,000 years ago in an event called the Laschamps excursion.

Continue reading “41,000 Years Ago Earth’s Shield Went Down”