A Look Inside the Dragon Capsule, Now in Orbit

An automated image taken from inside SpaceX's Dragon capsule after launch. Credit: SpaceX

[/caption]

SpaceX has released this automated image, a first look inside the Dragon spacecraft in orbit after the successful launch early this morning. What is all on board the Dragon? The payload includes over 300 kilograms of food, crew clothing and pantry items, a NanoRacks Module of student experiments, and a laptop computer. On board the second stage, and not on board Dragon as reported earlier, was a canister from the Celestis company that included the cremated remains of more than 300 people, including Mercury astronaut Gordon “Gordo” Cooper and the actor James Doohan, famous for playing Scotty in the “Star Trek,” series.

You can see a pdf of the entire payload here, which also includes what Dragon will be taking back home from the ISS. This capability, being able to bring experiments, used parts and other items back to Earth, can currently only be done by the Soyuz spacecraft, and so this added capability that Dragon provides is a big.

What is next for Dragon? Here’s what will be happening the next few days:

May 23: Dragon orbits Earth as it travels toward the International Space Station.

May 24: Dragon’s sensors and flight systems are subjected to a series of complicated tests to determine if the vehicle is ready to berth with the space station; these tests include maneuvers and systems checks in which the vehicle comes within 1.5 miles of the station.

May 25: NASA decides if Dragon is allowed to attempt berthing with the station. If so, Dragon approaches. It is captured by station’s robotic arm and attached to the station, a feat that requires extreme precision.

May 25 – 31: Astronauts open Dragon’s hatch, unload supplies and fill Dragon with return cargo.

May 31: After approximately two weeks, Dragon is detached from the station and returns to Earth, landing in the Pacific, hundreds of miles west of Southern California.

Today, the big events (besides launch) included the successful deploy of the solar arrays, ensuring the capsule would have power to do all the on-orbit maneuvers and berthing to the ISS.

The next big event was the opening of the Guidance, Navigation and Control (GNC) door on the spacecraft, which allows Dragon to navigate in space with its Light Detection and Ranging, or LIDAR, and a star tracker GPS system. During the press conference this morning, SpaceX CEO Elon Musk referred to this as important as “opening the payload doors, much like in the movie 2001.”

SpaceX Dragon Launch Slides to May 19

April 30, 2012 static fire test of Falcon 9 rocket at Pad 40 in Cape Canaveral. Credit: SpaceX

[/caption]SpaceX has announced that the upcoming launch of the firms Falcon 9 and Dragon spacecraft on the commercial COTS 2 mission has been postponed to a new target date of no earlier than May 19 with a backup launch date of May 22.

On May 19, the Falcon 9 rocket would lift off on its first night time launch at 4:55 a.m. EDT (0855 GMT) from Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida.

Two launch opportunities had been available this week on May 7 and May 10, following the most recent slip from April 30.

SpaceX managers made the decision – in consultation with NASA – to delay the COTS 2 launch in order to complete further highly critical testing and verifications of all the flight software requirements for the Dragon spacecraft to safely and successfully carry its mission of rendezvousing and docking with the International Space Station (ISS).

“SpaceX and NASA are nearing completion of the software assurance process, and SpaceX is submitting a request to the Cape Canaveral Air Force Station for a May 19th launch target with a backup on May 22nd,” said SpaceX spokesperson Kirstin Grantham.

“Thus far, no issues have been uncovered during this process, but with a mission of this complexity we want to be extremely diligent.”

May 10 was the last window of opportunity this week because of the pending May 14 blast off of a new Russian Soyuz TMA-04M capsule from the Baikonur Cosmodrome in Kazakhstan with three fresh crew members bound for the ISS which will restore the outpost to a full crew complement of 6 human residents.

The Falcon 9 and Dragon can only be launched about every three days.

The purpose of Dragon is to carry supplies up to and back from the ISS. Dragon is a commercial spacecraft developed by SpaceX and designed to replace some of the cargo resupply functions previously conducted by NASA’s fleet of prematurely retired Space Shuttle orbiters. At this moment the US has zero capability to launch cargo or crews to the ISS.

SpaceX Dragon approaches the ISS on 1st test flight and Station Docking in 2012. Astronauts will grapple it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

In response to the SpaceX announcement, NASA issued the following statement from from William Gerstenmaier, associate administrator for Human Exploration and Operations at the agency’s Headquarters in Washington:

“After additional reviews and discussions between the SpaceX and NASA teams, we are in a position to proceed toward this important launch. The teamwork provided by these teams is phenomenal. There are a few remaining open items, but we are ready to support SpaceX for its new launch date of May 19.”

SpaceX is under contract with NASA to conduct twelve resupply missions to the ISS to carry cargo back and forth for a cost of some $1.6 Billion.

Dragon is loaded with nearly 1200 pounds of non-critical cargo such as food and clothing on this flight.

The COTS 2 mission has been repeatedly delayed since the originally planned target of mid-2011 when SpaceX requested that the COTS 2 and 3 flights be combined into one mission to save time. The first Dragon docking to the ISS was initially planned for the COTS 3 mission.

This SpaceX Falcon 9 rocket inside the processing hanger at Pad 40 is due for liftoff on May 19, 2012 to the ISS. Credit: Ken Kremer/www.kenkremer.com

Ken Kremer

SpaceX Falcon 9 Set for Critical Engine Test Firing on Monday, April 30

The SpaceX Dragon spacecraft rests on top of the Falcon 9 rocket at SpaceX’s launch site in Cape Canaveral, FL. Credit: SpaxeX

[/caption]

On Monday, April 30, SpaceX (Space Exploration Technologies) is all set to conduct a critical static engine test fire of the Falcon 9 rocket at the firm’s launch pad on Cape Canaveral, Florida.

If all goes well, SpaceX and NASA are targeting a May 7 liftoff of the rocket and Dragon spacecraft at 9:38 AM, bound for the International Space Station (ISS). This launch signifies the first time that a commercial company is attempting to dock at the ISS.

The Falcon 9 rocket with the Dragon bolted on top was rolled out to the pad at Space Launch Complex 40 (SLC-40) on the transporter-erecter on Sunday morning (April 29), SpaceX spokesperson Kirstin Grantham told Universe Today.

“The Falcon 9 is vertical. Fueling begins Monday,” said Grantham.

On Sunday night, SpaceX CEO Elon Musk tweeted: “Dragon review completed. All systems now ready for full thrust hold down firing on Monday.”

Today the 180 foot long rocket was moved about 600 feet on rail tracks from the processing hanger to Pad 40 in anticipation of the engine test firing.

During the hotfire test, all nine of the powerful liquid fueled Merlin 1C first stage engines will be ignited at full power for two seconds as part of a full launch dress rehearsel for the flight, dubbed COTS 2. SpaceX engineers will run through all launch procedures on Monday as though this were an actual launch on launch day.

This is the second Falcon 9 launch for NASA as part of the agency’s Commercial Orbital Transportation Services program designed to enable commercial firms to deliver cargo to the ISS following the retirement of NASA’s fleet of Space Shuttles. The first Falcon 9 COTS test flight took place in December 2010.

The Dragon spacecraft being rotated before it is mated to the Falcon 9 rocket in SpaceX’s hangar in Cape Canaveral, FL. CREDIT: NASA

You can watch a live webcast of the engine test at www.spacex.com starting at 2:30 PM ET/ 11:30 AM PT, with the actual static fire targeted for 3:00 PM ET/ 12:00 PM PT according to SpaceX.

SpaceX is under contract to NASA to conduct twelve resupply missions to the ISS to carry cargo back and forth for a cost of some $1.6 Billion.

This SpaceX Falcon 9 rocket inside the processing hanger at Pad 40 is due for liftoff on May 7, 2012 to the ISS. The Falcon 9 booster was moved on rail tracks to the pad on April 29 and the Merlin 1C first stage engines (at right) will be test fired on April 30. Credit: Ken Kremer

SpaceX Test Fires SuperDraco Abort Engines Critical To Astronaut Launch Safety

SpaceX test-fires its SuperDraco engine that powers the manned Dragon spacecraft launch escape system critical for Astronaut safety during launch to orbit. Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) has test fired a prototype of its new SuperDraco engine that will be critical to saving the lives of astronauts flying aboard a manned Dragon spacecraft soaring to orbit in the event of an in-flight emergency.

The successful full-duration, full-thrust firing of the new SuperDraco engine prototype was completed at the company’s Rocket Development Facility in McGregor, Texas. The SuperDraco is a key component of the launch abort system of the Dragon spacecraft that must fire in a split second to insure crew safety during launch and the entire ascent to orbit.

The Dragon spacecraft is SpaceX’s entry into NASA’s commercial crew development program – known as CCDEV2 – that seeks to develop a commercial ‘space taxi’ to launch human crews to low Earth orbit and the International Space Station (ISS).

The engine fired for 5 seconds during the test, which is the same length of time the engines need to burn during an actual emergency abort to safely thrust the astronauts away.

Watch the SpaceX SuperDraco Engine Test Video:

Nine months ago NASA awarded $75 million to SpaceX to design and test the Dragon’s launch abort system . The SuperDraco firing was the ninth of ten milestones that are to be completed by SpaceX by around May 2012 and that were stipulated and funded by a Space Act Agreement (SAA) with NASA’s Commercial Crew Program (CCP).

“SpaceX and all our industry partners are being extremely innovative in their approaches to developing commercial transportation capabilities,” said Commercial Crew Program Manager Ed Mango in a NASA statement. “We are happy that our investment in SpaceX was met with success in the firing of its new engine.”

Dragon will launch atop the Falcon 9 rocket, also developed by SpaceX.

SpaceX test-fires its SuperDraco engine that will eventually power the manned Dragon spacecrafts launch escape system critical for Astronaut safety during launch to orbit. Credit: SpaceX

“Eight SuperDracos will be built into the sidewalls of the Dragon spacecraft, producing up to 120,000 pounds of axial thrust to quickly carry astronauts to safety should an emergency occur during launch,” said Elon Musk, SpaceX chief executive officer and chief technology officer in a statement. “Those engines will have the ability to deep throttle, providing astronauts with precise control and enormous power.”

“Crews will have the unprecedented ability to escape from danger at any point during the launch because the launch abort engines are integrated into the side walls of the vehicle,” Musk said. “With eight SuperDracos, if any one engine fails the abort still can be carried out successfully.”

SuperDraco engines will power the launch escape system of SpaceX’s Dragon. Eight SuperDraco engines built into the side walls of the Dragon spacecraft will produce up to 120,000 pounds of axial thrust to carry astronauts to safety should an emergency occur during launch. Credit: SpaceX

SpaceX is one of four commercial firms working to develop a new human rated spacecraft with NASA funding. The other firms vying for a commercial crew contract are Boeing, Sierra Nevada and Blue Origin.

“SuperDraco engines represent the best of cutting edge technology,” says Musk. “These engines will power a revolutionarylaunch escape system that will make Dragon the safest spacecraft in history and enable it to land propulsively on Earth or another planet with pinpoint accuracy.”

The privately developed space taxi’s will eventually revive the capability to ferry American astronauts to and from the ISS that was totally lost when NASA’s Space Shuttle orbiters were forcibly retired before a replacement crew vehicle was ready to launch.

Because the US Congress slashed NASA’s commercial crew development funding by more than 50% -over $400 million – the first launch of a commercial space taxi is likely to be delayed several more years to about 2017. Until that time, all American astronauts must hitch a ride to the ISS aboard Russian Soyuz capsules.

This week the Russian manned space program suffered the latest in a string of failures when when technicians performing a crucial test mistakenly over pressurized and damaged the descent module of the next manned Soyuz vehicle set to fly to the ISS in late March, thereby forcing about a 45 day delay to the launch of the next manned Soyuz from Kazakhstan.

Solar Powered Dragon gets Wings for Station Soar

SpaceX Dragon set to dock at International Space Station on COTS 2/3 mission. Falcon 9 launch of Dragon on COTS 2/3 mission is slated for Feb.7, 2012 from pad 40 at Cape Canaveral, Florida. Artist’s rendition of Dragon spacecraft with solar panels fully deployed on orbit. ISS crew will grapple Dragon and berth to ISS docking port. Credit: NASA

[/caption]

The Dragon has grown its mighty wings

SpaceX’s Dragon spacecraft has gotten its wings and is set to soar to the International Space Station (ISS) in about a month. NASA and SpaceX are currently targeting a liftoff on Feb. 7 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Dragon is a commercially developed unmanned cargo vessel constructed by SpaceX under a $1.6 Billion contract with NASA. The Dragon spacecraft will launch atop a Falcon 9 booster rocket also built by SpaceX, or Space Exploration Technologies.

Dragon’s solar array panels being installed on Dragon’s trunk at the SpaceX hangar in Cape Canaveral,FL.

The Feb. 7 demonstration flight – dubbed COTS 2/3 – represents the first test of NASA’s new strategy to resupply the ISS with privately developed rockets and cargo carriers under the Commercial Orbital Transportation Services (COTS) initiative.

Following the forced retirement of the Space Shuttle after Atlantis final flight in July 2011, NASA has no choice but to rely on private companies to loft virtually all of the US share of supplies and equipment to the ISS.

The Feb. 7 flight will be the first Dragon mission actually tasked to dock to the ISS and is also the first time that the Dragon will fly with deployable solar arrays. The twin arrays are the primary power source for the Dragon. They will be deployed a few minutes after launch, following Dragon separation from the Falcon 9 second stage.

The solar arrays can generate up to 5000 watts of power on a long term basis to run the sensors and communications systems, drive the heating and cooling systems and recharge the battery pack.

SpaceX designed, developed and manufactured the solar arrays in house with their own team of engineers. As with all space hardware, the arrays have been rigorously tested for hundreds of hours under the utterly harsh conditions that simulate the unforgiving environment of outer space, including thermal, vacuum, vibration, structural and electrical testing.

SpaceX engineers conducting an early solar panel test. Hundreds of flood lamps simulate the unfiltered light of the sun. Photo: Roger Gilbertson/ SpaceX

The two arrays were then shipped to Florida and have been attached to the side of the Dragon’s bottom trunk at SpaceX’s Cape Canaveral launch processing facilities. They are housed behind protective shielding until commanded to deploy in flight.


Video Caption: SpaceX testing of the Dragon solar arrays. Credit: SpaceX

I’ve toured the SpaceX facilities several times and seen the Falcon 9 and Dragon capsule launching on Feb. 7. The young age and enthusiasm of the employees is impressive and quite evident.

NASA recently granted SpaceX the permission to combine the next two COTS demonstration flights into one mission and dock the Dragon at the ISS if all the rendezvous practice activities in the vicinity of the ISS are completed flawlessly.

Dragon with the protective fairings installed over the folded solar arrays, at the SpaceX

The ISS crew is eagerly anticipating the arrival of Dragon, for whch they have long trained.

“We’re very excited about it,” said ISS Commander Dan Burbank in a televised interview from on board the ISS earlier this week.

The ISS crew will grapple the Dragon with the station’s robotic arm when it comes within reach and berth it to the Earth-facing port of the Harmony node.

“From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

Burbank is a US astronaut and captured stunning images of Comet Lovejoy from the ISS just before Christmas, collected here.

Read recent features about the ISS and commercial spaceflight by Ken Kremer here:
Dazzling Photos of the International Space Station Crossing the Moon!
Absolutely Spectacular Photos of Comet Lovejoy from the Space Station
NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

Jan 11: Free Lecture by Ken at the Franklin Institute, Philadelphia, PA at 8 PM for the Rittenhouse Astronomical Society. Topic: Mars & Vesta in 3 D – Plus Search for Life & GRAIL

Space Station Crew Anticipating SpaceX Dragon’s Arrival

As part of the COTS 3 objectives Dragon approaches the ISS, so astronauts can reach it with the robotic arm. Illustration: NASA / SpaceX.

[/caption]

In a media chat on Wednesday three crew members from the International Space Station said they are anticipating the historic arrival of SpaceX’s Dragon cargo ship to the ISS next month. “For all of us, we’re very excited about it,” said ISS Commander Dan Burbank. “Number one, for the sake of the Space Station, that is critical capability — to resupply the station and be able to return critical hardware, or payloads… And down the road it also affords capability to actually deliver crew to the station. I think that is very exciting.”

Burbank called the first arrival of a commercial vehicle “the start of new era.”

SpaceX released this image on January 4, 2012 showing the Dragon spacecraft in final processing, getting ready to head to the ISS. Credit: SpaceX

February 7, 2012 is the target date for the launch of the Dragon capsule. It will arrive at the ISS one to three days later and once there, Dragon will begin the demonstrations related to the Commercial Orbital Transportation Services Phase 2 agreements (COTS 2) to show proper performance and control in the vicinity of the ISS, while remaining outside the Station’s safe zone. Then, if all goes well, Dragon will receive approval to begin the COTS 3 activities, where it will gradually approach within a few meters of the ISS, allowing astronauts to reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into one of the docking ports.

Burbank said Dragon’s non-autonomous docking will put the astronauts at the center of activities for the vehicle’s arrival. “Anytime we have a visiting vehicle, those are exciting, dynamic events that from the operational standpoint,” he said.

But vehicles that come to the Station that need to be captured with the robotic arm offer an exceptional challenge for the crew. “From the standpoint of a pilot it is a fun, interesting, very dynamic activity and we are very much looking forward to it,” Burbank said. “It is the start of a new era, having commercial vehicles that come to Station.”

The Dragon will stay docked to the ISS for about a week while astronauts unload cargo and then re-load it with Earth-bound cargo. It will undock and return to Earth with a splashdown in the Pacific Ocean near the California coast.

NASA announced in December that the COTS 2 and 3 activities could be combined in one flight.

“This will be the first of many ‘wagon train’ wagons to bring us supplies,” said Flight Engineer Don Pettit. “One of the neat things about the SpaceX vehicle is that it will allow us to take significant payloads down, which is a real important thing since we no longer fly shuttles, we can’t take anything sizable back down from Space Station without it burning up. SpaceX will be our way to get…things back to the ground.”

In talking with the media, Burbank also spoke about his opportunity to capture stunning images of Comet Lovejoy from space,(see his images here) and encouraged the next generation of astronauts that now is the time to join the astronaut corps.

Pettit and ESA astronaut Andre Kuipers discussed science research currently being done on the ISS, such as human medical experiments. Kuipers was covered with monitoring systems to determine his cardiac response while doing different activities in space. There are also human life studies and engineering research, which Pettit described as “mundane things like how to make a toilet that works and to take the urine and process it and make it back into water… Now you can go into the toilet and the machines will whir and grind and then you can go and make yourself a bag of coffee. We‘ll need these kinds of things if we are going to go far from Earth for long periods of time.”

Watch the video of the entire conversation below.

NASA announces Feb. 7 launch for 1st SpaceX Docking to ISS

SpaceX Dragon spacecraft approaches ISS on Test Flight set for Feb. 7, 2012 launch. During the SpaceX COTS 2/3 demonstration mission in February 2012, the objectives include Dragon demonstrating safe operations in the vicinity of the ISS. After successfully completing the COTS 2 rendezvous requirements, Dragon will receive approval to begin the COTS 3 activities, gradually approaching the ISS from the radial direction (toward the Earth), to within a few meters of the ISS. Astronauts will reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place over several hours of operations. Credit: NASA / SpaceX.

[/caption]

Make or break time for NASA’s big bet on commercial space transportation is at last in view. NASA has announced Feb. 7, 2012 as the launch target date for the first attempt by SpaceX to dock the firms Dragon cargo resupply spacecraft to the International Space Station (ISS), pending final safety reviews.

The Feb. 7 flight will be the second of the so-called Commercial Orbital Transportation Services (COTS) demonstration flights to be conducted by Space Exploration Technologies, or SpaceX, under a contact with NASA.

Several months ago SpaceX had requested that the objectives of the next two COTS flights, known as COTS 2 and COTS 3, be merged into one very ambitious flight and allow the Dragon vehicle to actually dock at the ISS instead of only accomplishing a rendezvous test on the next flight and waiting until the third COTS flight to carry out the final docking attempt.

The Dragon will remain attached to the ISS for about one week and astronauts will unload the cargo. Then the spacecraft will depart, re-enter the Earth atmosphere splashdown in the Pacific Ocean off the coast of California.

“The cargo is hundreds of pounds of astronaut provisions,” SpaceX spokeswoman Kirstin Grantham told Universe Today.

SpaceX Dragon approaches the ISS
Astronauts can reach it with the robotic arm and berth it at the Earth facing port of the Harmony node. Illustration: NASA /SpaceX

“SpaceX has made incredible progress over the last several months preparing Dragon for its mission to the space station,” said William Gerstenmaier, NASA’s associate administrator for the Human Exploration and Operations Mission Directorate. “We look forward to a successful mission, which will open up a new era in commercial cargo delivery for this international orbiting laboratory.”

Since the forced retirement of NASA’s Space Shuttle following the final fight with orbiter Atlantis in July 2011 on the STS-135 mission, the US has had absolutely zero capability to launch either supplies or human crews to the massive orbiting complex, which is composed primarily of US components.

In a NASA statement, Gerstenmaier added, “There is still a significant amount of critical work to be completed before launch, but the teams have a sound plan to complete it and are prepared for unexpected challenges. As with all launches, we will adjust the launch date as needed to gain sufficient understanding of test and analysis results to ensure safety and mission success.”

SpaceX lofted the COTS 1 flight a year ago on Dec. 8, 2010 and became the first private company to successfully launch and return a spacecraft from Earth orbit. SpaceX assembled both the Falcon 9 booster rocket and the Dragon cargo vessel from US built components.

An astronaut operating the robot arm aboard the ISS will move Dragon into position at the berthing port where it will be locked in place at the Harmony node. Illustration: NASA /SpaceX

The new demonstration flight is now dubbed COTS 2/3. The objectives include Dragon safely demonstrating all COTS 2 operations in the vicinity of the ISS by conducting check out procedures and a series of rendezvous operations at a distance of approximately two miles and the ability to abort if necessary.

The European ATV and Japanese HTV cargo vessels carried out a similar series of tests during their respective first flights.

After accomplishing all the rendezvous tasks, Dragon will then receive approval to begin the COTS 3 activities, gradually approaching the ISS from below to within a few meters.

Specially trained astronauts working in the Cupola will then reach out and grapple Dragon with the Station’s robotic arm and then maneuver it carefully into place onto the Earth-facing side of the Harmony node. The operations are expected to take several hours.

The COTS Demo 2/3 Dragon spacecraft at Cape Canaveral. Photo: SpaceX

If successful, the Feb. 7 SpaceX demonstration flight will become the first commercial mission to visit the ISS and vindicate the advocates of commercial space transportation who contend that allowing private companies to compete for contracts to provide cargo delivery services to the ISS will result in dramatically reduced costs and risks and increased efficiencies.

The new commercial paradigm would also thereby allow NASA to focus more of its scarce funds on research activities to come up with the next breakthroughs enabling bolder missions to deep space.

If the flight fails, then the future of the ISS could be in serious jeopardy in the medium to long term because there would not be sufficient alternative launch cargo capacity to maintain the research and living requirements for a full crew complement of six residents aboard the orbiting laboratory.

Feb. 7 represents nothing less than ‘High Stakes on the High Frontier’.

NASA is all about bold objectives in space exploration in both the manned and robotic arenas – and that’s perfectly represented by the agencies huge gamble with the commercial cargo and commercial crew initiatives.