If We Want to Visit More Asteroids, We Need to Let the Spacecraft Think for Themselves

Missions to asteroids have been on a tear recently. Visits by Rosetta, Osirix-REX, and Hayabusa2 have all visited small bodies and, in some cases, successfully returned samples to the Earth. But as humanity starts reaching out to asteroids, it will run into a significant technical problem – bandwidth. There are tens of thousands of asteroids in our vicinity, some of which could potentially be dangerous. If we launched a mission to collect necessary data about each of them, our interplanetary communication and control infrastructure would be quickly overwhelmed. So why not let our robotic ambassadors do it for themselves – that’s the idea behind a new paper from researchers at the Federal University of São Paulo and Brazil’s National Institute for Space Research.

Continue reading “If We Want to Visit More Asteroids, We Need to Let the Spacecraft Think for Themselves”

Another Asteroid Discovered Hours Before it Impacts the Earth

What were you doing last Saturday? As it turns out, I was doing something rather unexciting… Trying to fix my washing machine (I did – in case you are interested). At the same time, Hungarian geography teacher by day and asteroid hunter by night Krisztián Sárneczky was out observing and detected a small asteroid which it transpired was on a collision course with Earth! 

Continue reading “Another Asteroid Discovered Hours Before it Impacts the Earth”

Planetary Surfaces: Why study them? Can they help us find life elsewhere?

Universe Today recently explored the importance of studying impact craters and what they can teach us about finding life beyond Earth. Impact craters are considered one of the many surface processes—others include volcanism, weathering, erosion, and plate tectonics—that shape surfaces on numerous planetary bodies, with all of them simultaneously occurring on Earth. Here, we will explore how and why planetary scientists study planetary surfaces, the challenges faced when studying other planetary surfaces, what planetary surfaces can teach us about finding life, and how upcoming students can pursue studying planetary surfaces, as well. So, why is it so important to study planetary surfaces throughout the solar system?

Continue reading “Planetary Surfaces: Why study them? Can they help us find life elsewhere?”

Impact Craters: Why study them and can they help us find life elsewhere?

Image of a fresh impact crater with a diameter of approximately 30 meters (100 feet) with corresponding ejecta rays obtained by NASA’s High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter on Nov. 19, 2013. (Credit: NASA/JPL-Caltech/Univ. of Arizona)

When we look at the Moon, either through a pair of binoculars, a telescope, or past footage from the Apollo missions, we see a landscape that’s riddled with what appear to be massive sinkholes. But these “sinkholes” aren’t just on the Moon, as they are evident on nearly every planetary body throughout the solar system, from planets, to other moons, to asteroids. They are called impact craters and can range in size from cities to small countries.

Continue reading “Impact Craters: Why study them and can they help us find life elsewhere?”

DART Showed We Can Move an Asteroid. Can We Do It More Efficiently?

This illustration depicts NASA’s Double Asteroid Redirection Test (DART) spacecraft prior to impact at the Didymos binary asteroid system. Credit: NASA/Johns Hopkins APL/Steve Gribben
This illustration depicts NASA’s Double Asteroid Redirection Test (DART) spacecraft prior to impact at the Didymos binary asteroid system. Credit: NASA/Johns Hopkins APL/Steve Gribben

Like many of you, I loved Deep Impact and Armageddon. Great films, loads of action and of course, an asteroid on collision course with Earth. What more is there to love!  Both movies touched upon the options for humanity to try and avoid such a collision but the reality is a little less Hollywood. One of the most common options is to try some sort of single impact style event as was demonstrated by the DART (Double Asteroid Redirection Test) mission but a new paper offer an intriguing and perhaps more efficient alternative.

Continue reading “DART Showed We Can Move an Asteroid. Can We Do It More Efficiently?”

For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe

Artist impression of ESA's Gaia satellite observing the Milky Way. The background image of the sky is compiled from data from more than 1.8 billion stars. It shows the total brightness and colour of stars observed by Gaia
Artist impression of ESA's Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)

Ripples in a pond can be captivating on a nice sunny day as can ripples in the very fabric of space, although the latter are a little harder to observe.  Using the highly tuned Gaia probe, a team of astronomers propose that it might just be possible to detect gravitational waves through the disturbance they impart on the movement of asteroids in our Solar System!

Continue reading “For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe”

JWST Detects Carbon Dioxide in a Centaur for the First Time

Centaurs are small planetary bodies that orbit between Jupiter and Neptune and have baffled astronomers for sharing characteristics with both asteroids and comets. Centaurs got their name after the mythical half-horse, half-human creatures called centaurs due to their dual characteristics. Above is an artist's illustration displaying a centaur creature among asteroids (left) and comets (right). (Credit: NASA/JPL-Caltech)

A study published today in The Planetary Science Journal examines how NASA’s James Webb Space Telescope (JWST) has conducted a first-time detection of carbon dioxide in a Centaur, this one designated 39P/Oterma. A Centaur is a small planetary body that orbits between Jupiter and Neptune and frequently crosses the orbits of one or more of the gas giant planets within our solar system. While no Centaur has been imaged up-close, they typically exhibit a combination of attributes between comets and asteroids. While carbon monoxide has been detected in two known centaurs, this recent discovery could mark a turning point in how scientists understand the formation, evolution, and composition of not only Centaurs, but of the early solar system, as well.

Continue reading “JWST Detects Carbon Dioxide in a Centaur for the First Time”

This Interactive Tool Lets you Simulate Asteroid Impacts Anywhere on Earth

Asteroid impacts rank highest on the UN’s list of potentially species-ending calamities. They’ve been the subject of countless movies and books, some of which are accurate depictions of what would happen, and some of which are not. Now, if you’ve ever been interested to see what would happen if different sizes of asteroid impact different areas of the globe, the internet has a tool for you!

Continue reading “This Interactive Tool Lets you Simulate Asteroid Impacts Anywhere on Earth”

Astronomers Spotted a Tiny Asteroid A Few Hours Before it Impacted the Earth, and Predicted Exactly Where and When it Would Crash

Humanity is getting better a planetary defense. At least from external threats from outer space. As long as they’re just dumb rocks that follow the laws of physics. And a group of extraordinary humans proved it last week when the planetary defense community jumped into action to accurately track and predict exactly where a relatively small meteor would fall on November 19th.

Continue reading “Astronomers Spotted a Tiny Asteroid A Few Hours Before it Impacted the Earth, and Predicted Exactly Where and When it Would Crash”

OSIRIS-REx Would Have Sunk Deep into Asteroid Bennu if it Tried to Land

A pair of studies published in Science and Science Advances have helped identify that NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) spacecraft would have sunk into the asteroid Bennu had the spacecraft not fired its thrusters immediately after collecting samples from the surface of the small planetary body in October 2020. The respective studies examined the loosely packed exterior of Bennu, comparing its surface to stepping into a pit of plastic balls that people of all ages enjoy. The paper in Science was led by Dr. David Lauretta, Principal Investigator of OSIRIS-REx and a Regents Professor at the University of Arizona, and the paper in Science Advances was led by Dr. David Walsh, a member of the OSIRIS-REx team from the Southwest Research Institute in Boulder, Colorado.

Continue reading “OSIRIS-REx Would Have Sunk Deep into Asteroid Bennu if it Tried to Land”