Organics Found in Mars Meteorites, But Nothing Biological

by Nancy Atkinson on June 20, 2012

Editor’s note: This guest post was written by Andy Tomaswick, an electrical engineer who follows space science and technology.

The search for biologically created organic molecules on Mars goes back at least to the 1970s with the Viking program. Those missions had famously mixed results, and so the search for carbon-based life on Mars continues to this day. Researchers keeping piling on more and more evidence to excite astrobiologists and new results published in a study by the Planetary Science Institute and the Carnegie Institute of Washington may heighten their enthusiasm.

The latest results come from a team led by Andrew Steele of the Carnegie Institution for Science who surveyed meteorites from Mars, which covered a 4.2 billion year time span of Martian geology. While it is no surprise that there are organics on Mars — that Martian meteorites contain carbon-based molecules has been known for years — the team confirmed those findings by detecting organics on ten of the eleven meteorites they examined. However, questions remained as to where exactly the meteorite-bound organic molecules came from and, if they were from Mars, what had created them?

The team set out to answer these questions and came to the conclusion that the molecules are indeed from Mars and not the result of some cross-contamination from Earth’s biosphere. However, they also found that the molecules were not created by any biological process. The organics actually formed in the chunks of rock that later became the meteorites that transported them to earth. Their formation was part of a volcanic process that traps carbon in crystal structures formed by cooling magma. Through a series of non-biological chemical reactions, the complex organics found in the meteorites are created using the carbon trapped in these crystals.

The team also casts doubt on another possible explanation: whether the organics might be caused by emissions from microbes that had migrated into the volcano via tectonic processes similar to those on Earth. They point out that Mars does not have the tectonic activity similar to Earth so there is very little likelihood that the molecules are created by microbial activity.

That might sound like a depressing result for the astrobiologists. But the important finding from this study is that Mars has been natively and naturally creating complex organic molecules for 4.2 billion years and may be still be doing so today. Since the creation of organic molecules on Earth was a precursor to life, scientists can still hold out hope that the same life-creating process might have already happened on the red planet.

Interestingly, one of the Martian meteorites that was studied was the famous ALH84001, the meteorite that some researchers claimed in 1996 might contain fossils from Mars. That claim was subsequently strongly challenged, and studies of the rock are ongoing. ALH84001 is a portion of a meteorite that was dislodged from Mars by a huge impact about 16 million years ago and that fell to Earth in Antarctica approximately 13,000 years ago. The meteorite was found in Allan Hills ice field in Antarctica.

Read the team’s abstract.

Lead image caption: ALH84001 is one of 10 rocks from Mars in which researchers have found organic carbon compounds that originated on Mars without involvement of life. Credit: NASA/JSC/Stanford University

Sources: Planetary Science Institute, LiveScience, NASA


Nancy Atkinson is Universe Today's Senior Editor. She also works with Astronomy Cast, and is a NASA/JPL Solar System Ambassador.

Comments on this entry are closed.

Previous post:

Next post: