≡ Menu

Video Caption: This up close launch pad camera view is a time lapse sequence of images showing the sudden catastrophic explosion of Orbital Sciences Antares Orb 3 rocket seconds after blastoff and destructive incineration as it plummets into a hellish inferno at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com/Universe Today/AmericaSpace/Zero-G News

NASA WALLOPS FLIGHT FACILITY, VA – Moments after a seemingly glorious liftoff on Oct. 28, 2014, the Orbital Sciences Corp. commercial Antares rocket suffered a catastrophic failure as one of the Soviet-era first stage engines exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the doomed Orb-3 mission to the International Space Station (ISS).

Although I witnessed and photographed the launch failure from the media viewing area on site at NASA Wallops from a distance of about 1.8 miles away, myself and a small group of space journalists working together from Universe Today, AmericaSpace, and Zero-G News had also placed sound activated cameras directly at the launch pad to capture the most spectacular up close views for what we all expected to be a “nominal” launch.

Now in part 2 of this exclusive series of video and photos our team can show you the terrible fate suffered by Antares after its destructive descent and frightening incineration as it was consumed by a hellish inferno. [click to continue…]

{ 1 comment }

The Search for Dark Energy Just Got Easier

The Victor M. Blanco telescope at Cerro Tololo Interamerican Observatory (CTIO) in the Chilean Andes. Credit: Berkeley Lab

The Victor M. Blanco telescope at Cerro Tololo Interamerican Observatory (CTIO) in the Chilean Andes. Credit: Berkeley Lab

Since the early 20th century, scientists and physicists have been burdened with explaining how and why the Universe appears to be expanding at an accelerating rate. For decades, the most widely accepted explanation is that the cosmos is permeated by a mysterious force known as “dark energy”. In addition to being responsible for cosmic acceleration, this energy is also thought to comprise 68.3% of the universe’s non-visible mass.

Much like dark matter, the existence of this invisible force is based on observable phenomena and because it happens to fit with our current models of cosmology, and not direct evidence. Instead, scientists must rely on indirect observations, watching how fast cosmic objects (specifically Type Ia supernovae) recede from us as the universe expands.

This process would be extremely tedious for scientists – like those who work for the Dark Energy Survey (DES) – were it not for the new algorithms developed collaboratively by researchers at Lawrence Berkeley National Laboratory and UC Berkeley.

“Our algorithm can classify a detection of a supernova candidate in about .01 seconds, whereas an experienced human scanner can take several seconds,” said Danny Goldstein, a UC Berkeley graduate student who developed the code to automate the process of supernova discovery on DES images.
[click to continue…]

{ 1 comment }
The Opportunity rover's view on Sol 3,839 on Nov. 11, 2014, shortly after it pushed past 41 kilometers (nearly 28.5 miles) of driving on the Red Planet. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. (panorama: Elizabeth Howell)

The Opportunity rover’s view on Sol 3,839 on Nov. 11, 2014, shortly after it pushed past 41 kilometers (nearly 28.5 miles) of driving on the Red Planet. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. (panorama: Elizabeth Howell)

Opportunity is the rover that keeps on going and going. It recently broke an extraterrestrial driving record after 10 years of working on the Red Planet.

And even as the rover works through aging problems, the science team is still able to push it further — it just crested 41 kilometers (25.48 miles) on Sol Sol 3,836 (around Nov. 9)! Check out some recent pictures from the rover below.

[click to continue…]

{ 2 comments }
Artist's conception of NASA's Space Launch System. Credit: NASA

Artist’s conception of NASA’s Space Launch System. Credit: NASA

As the space community counts down the days to the long-awaited Dec. 4 uncrewed launch of the Orion spacecraft — that vehicle that is supposed to bring astronauts into the solar system in the next decade — NASA is already thinking ahead to the next space test in 2017 or 2018.

Riding atop the new Space Launch System rocket, if all goes to plan, will be a suite of CubeSats that will explore the Moon as Orion makes its journey out to our largest closest celestial neighbor. NASA announced details of the $5 million “Cube Quest” challenge yesterday (Nov. 24).

[click to continue…]

{ 3 comments }
Artist's impression of the European Space Agency's BepiColombo mission in operation around Mercury. Credit: Astrium

Artist’s impression of the European Space Agency’s BepiColombo mission in operation around Mercury. Credit: Astrium

After facing down a couple of delays due to technical difficulties, Europe’s and Japan’s first Mercury orbiter is entering some of the final stages ahead of its 2016 launch. Part of the BepiColombo orbiter moved into a European testing facility this past week that will shake, bake and otherwise test the hardware to make sure it’s ready for its extreme mission.

Because Mercury is so close to the Sun, BepiColombo is going to have a particularly harsh operating environment. Temperatures there will soar as high as 350 degrees Celsius (662 degrees Fahrenheit), requiring officials to change the chamber to simulate these higher temperatures. Time will tell if the spacecraft is ready for the test.

[click to continue…]

{ 2 comments }