≡ Menu
The Opportunity rover's view on Sol 3,839 on Nov. 11, 2014, shortly after it pushed past 41 kilometers (nearly 28.5 miles) of driving on the Red Planet. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. (panorama: Elizabeth Howell)

The Opportunity rover’s view on Sol 3,839 on Nov. 11, 2014, shortly after it pushed past 41 kilometers (nearly 28.5 miles) of driving on the Red Planet. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ. (panorama: Elizabeth Howell)

Opportunity is the rover that keeps on going and going. It recently broke an extraterrestrial driving record after 10 years of working on the Red Planet.

And even as the rover works through aging problems, the science team is still able to push it further — it just crested 41 kilometers (25.48 miles) on Sol Sol 3,836 (around Nov. 9)! Check out some recent pictures from the rover below.

[click to continue…]

{ 0 comments }
Artist's conception of NASA's Space Launch System. Credit: NASA

Artist’s conception of NASA’s Space Launch System. Credit: NASA

As the space community counts down the days to the long-awaited Dec. 4 uncrewed launch of the Orion spacecraft — that vehicle that is supposed to bring astronauts into the solar system in the next decade — NASA is already thinking ahead to the next space test in 2017 or 2018.

Riding atop the new Space Launch System rocket, if all goes to plan, will be a suite of CubeSats that will explore the Moon as Orion makes its journey out to our largest closest celestial neighbor. NASA announced details of the $5 million “Cube Quest” challenge yesterday (Nov. 24).

[click to continue…]

{ 1 comment }
Artist's impression of the European Space Agency's BepiColombo mission in operation around Mercury. Credit: Astrium

Artist’s impression of the European Space Agency’s BepiColombo mission in operation around Mercury. Credit: Astrium

After facing down a couple of delays due to technical difficulties, Europe’s and Japan’s first Mercury orbiter is entering some of the final stages ahead of its 2016 launch. Part of the BepiColombo orbiter moved into a European testing facility this past week that will shake, bake and otherwise test the hardware to make sure it’s ready for its extreme mission.

Because Mercury is so close to the Sun, BepiColombo is going to have a particularly harsh operating environment. Temperatures there will soar as high as 350 degrees Celsius (662 degrees Fahrenheit), requiring officials to change the chamber to simulate these higher temperatures. Time will tell if the spacecraft is ready for the test.

[click to continue…]

{ 1 comment }
The cover of the phonograph record on the Voyager 1 and 2 spacecraft, which contains an interstellar message encoded on a phonographic record.  The encoded instructions attempt to explain to extraterrestrials how to play the record.  Credit: NASA JPL

The cover of the phonograph record on the Voyager 1 and 2 spacecraft, which contains an interstellar message encoded on a phonographic record. The encoded instructions attempt to explain to extraterrestrials how to play the record, and the location of the Earth. Credit: NASA JPL

If extraterrestrial civilizations exist, the nearest is probably at least hundreds or thousands of light years away. Still, the greatest gulf that we will have to bridge to communicate with extraterrestrials is not such distances, but the gulf between human and alien minds.

In mid-November, the SETI Institute in Mountain View, California sponsored an academic conference on interstellar communication, “Communicating across the Cosmos“. The conference drew 17 speakers from a variety of disciplines, including linguistics, anthropology, archeology, mathematics, cognitive science, radio astronomy, and art. In this installment we will explore some of the formidable difficulties that humans and extraterrestrials might face in constructing mutually comprehensible interstellar messages. [click to continue…]

{ 1 comment }
A 3-D image of Comet 67P/Churyumov–Gerasimenko taken from the Philae lander as it descended. The picture is a combination of two images from the Rosetta Lander Imaging System (ROLIS) taken about an hour before landing at 10:34 a.m. EST (3:34 p.m. UTC) on Nov. 12, 2014. Credit: ESA/Rosetta/Philae/ROLIS/DLR

A 3-D image of Comet 67P/Churyumov–Gerasimenko taken from the Philae lander as it descended. The picture is a combination of two images from the Rosetta Lander Imaging System (ROLIS) taken about an hour before landing at 10:34 a.m. EST (3:34 p.m. UTC) on Nov. 12, 2014. Credit: ESA/Rosetta/Philae/ROLIS/DLR

The first soft comet landing Nov. 12 showed us how space missions can quickly drift to the unexpected. Philae’s harpoons to secure it failed to fire, and the spacecraft drifted for an incredible two hours across Comet 67P/Churyumov–Gerasimenko before coming to rest … somewhere. But where? And can the orbiting Rosetta spacecraft find it?

That’s been the obsession of the European Space Agency for the past couple of weeks. Controllers have pictures from Philae during its descent and brief science operations on the surface. They’ve managed to capture the little lander in incredible photographs from Rosetta. But the key to finding Philae will likely come from a different experiment altogether.

[click to continue…]

{ 0 comments }