It Looks Like These Are All the Bright Kuiper Belt Objects We’ll Ever Find

The self-professed “Pluto Killer” is at it again. Dr. Michael Brown is now reminiscing about the good old days when one could scour through sky survey data and discover big bright objects in the Kuiper Belt. In his latest research paper, Brown and his team have concluded that those days are over.

Ten years ago, Brown discovered what is now known as the biggest Kuiper Belt object – Eris. Brown’s team found others that rivaled Pluto in size and altogether, these discoveries led to the demotion of Pluto to dwarf planet. Now, using yet another sky survey data set but with new computer software, Brown says that its time to move on.

Instigators of the big heist - David Rabinowitz, Brown and Chad Trujillo, left to right. The researchers discovered dozens of Kuiper Belt objects (KBO) including six of the eight largest KBOs including the largest, Eris.
Instigators of the big heist – Rabinowitz, Brown and Trujillo, left to right. The researchers co-discovered dozens of Kuiper Belt objects (KBO) including nine of the ten largest KBOs including the largest, Eris.

Like the famous Bugs Bunny cartoon, its no longer Rabbit Season or Duck Season and as Bugs exclaims to Elmer Fudd, there is no more bullets. Analyzing seven years worth of data, Brown and his team has concluded we are fresh out of Pluto or Charon-sized objects to be discovered in the Kuiper Belt. But for Dr. Brown, perhaps it now might be Oort Cloud season.

His latest paper, A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System, in pre-print, describes the completion of analysis of two past sky surveys covering the northern and southern hemisphere down to 20 degrees in Galactic latitude. Using revised computer software, his team scoured through the data sets from the Catalina Sky Survey (CSS) and the Siding Spring Survey (SSS). The surveys are called “fast cadence surveys” and they primarily search for asteroids near Earth and out to the asteroid belt. Instead Brown’s team used the data to look at image frames spaced days and months apart.

Update: In a Twitter communique, Dr. Brown stated, “I would say we’re out of BRIGHT ones, not big ones. Could be big ones lurking far away!” His latest work involved a southern sky survey (SSS) to about magnitude 19 and the northern survey (CSS) to 21. Low albedo (dark) and more distant KBOs might be lurking beyond the detectability of these surveys that are in the range of Charon to Pluto in size.

Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. (Credit: Brown, et al.)
Animation showing the movement of Eris on the images used to discover it. Eris is indicated by the arrow. The three frames were taken over a period of three hours. More images over several weeks were necessary to determine its orbit.(Credit: Brown, et al.)

Objects at Kuiper Belt distances move very slowly. For example, Pluto orbits the Sun at about 17,000 km/hr (11,000 mph), taking 250 years to complete one orbit. These are speeds that are insufficient to maintain ven a low-Earth orbit. Comparing two image frames spaced just hours apart will find nearby asteroids moving relative to the star fields but not Kuiper belt objects. So using image frames spaced days, weeks or even months apart, they searched again. Their conclusion is that all the big Kuiper belt objects have been found.

The only possibility of finding another large KBO lies in a search of the galactic plane which is difficult due to the density of Milky Way’s stars in the field of view. The vast number of small bodies in the Kuiper belt and Oort Cloud lends itself readily to statistical analysis. Brown states that there is a 32% chance of finding another Pluto-sized object hiding among the stars of the Milky Way.

Artists concept of the view from Eris with Dysnomia  in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)
Artists concept of the view from Eris with Dysnomia in the background, looking back towards the distant sun. Credit: Robert Hurt (IPAC)

Dr. Brown also released a blog story in celebration of the discovery of the largest of the Kuiper Belt objects, Eris, ten years ago last week. Ten years of Eris, reminisces about the great slew of small body discoveries by Dr. Brown, Dr. Chad Trujillo of Gemini Observatory and Dr. David Rabinowitz of Yale Observatory.

Brown encourages others to take up this final search right in the galactic plane but apparently his own intentions are to move on. What remains to be seen — that is, to be discovered — are hundreds of large “small” bodies residing in the much larger region of the Oort Cloud. These objects are distributed more uniformly throughout the whole spherical region that the Cloud defines around the Sun.

Furthermore, Dr. Brown maintains that there is a good likelihood that a Mars or Earth-sized object exists in the Oort Cloud.

Small bodies within our Solar System along with exo-planets are perhaps the hottest topics and focuses of study in Planetary Science at the moment. Many graduate students and seasoned researchers alike are gravitating to their study. There are certainly many smaller Kuiper belt objects remaining to be found but more importantly, a better understanding of their makeup and origin are yet to be revealed.

Artist's concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn's approach phase and RC3 orbit This artist’s concept of NASA’s Dawn  spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)
Artist’s concept of the Dawn spacecraft at the protoplanet Ceres Illustration of Dawn’s approach phase and RC3 orbit This artist’s concept of NASA’s Dawn spacecraft shows the craft orbiting high above Ceres, where the craft will arrive in early 2015 to begin science investigations. (Image credit: NASA/JPL-Caltech)

Presently, the Dawn spacecraft is making final approach to the dwarf planet Ceres in the Asteroid belt. The first close up images of Ceres are only a few days away as Dawn is now just a couple of 100 thousand miles away approaching at a modest speed. And much farther from our home planet, scientists led by Dr. Alan Stern of SWRI are on final approach to the dwarf planet Pluto with their space probe, New Horizons. The Pluto system is now touted as a binary dwarf planet. Pluto and its moon Charon orbit a common point (barycenter) in space that lies between Pluto and Charon.

So Dr. Brown and team exits stage left. No more dwarf planets – at least not soon and not in the Kuiper belt. Will that upstage what is being called the year of the Dwarf Planet?

But next up for close inspection for the first time are Ceres, Pluto and Charon. It should be a great year.

The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)
The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)

References:

A Serendipitous All Sky Survey For Bright Objects In The Outer Solar System

Ten Years of Eris

2015, NASA’s Year of the Dwarf Planet, Universe Today

What is the Kuiper Belt?, Universe Today

Nearby Exoplanet Could Be Covered With Diamond

Illustration of 55 Cancri e, a super-Earth that’s thought to have a thick layer of diamond (Yale News/Haven Giguere)

If diamonds are forever then this planet should be around for a very, very long time; it appears to be literally made of the stuff.

55 Cancri e — an exoplanet discovered in 2004 — is more than twice Earth’s diameter and over eight times more massive, making it a so-called “super Earth.” Earlier this year it made headlines by being the first Earth-sized exoplanet whose light was directly observed via the infrared capabilities of NASA’s Spitzer Space Telescope.

Using information about 55 Cancri e’s size, mass and orbital velocity, as well as the composition of its parent star 55 Cancri (located 40 light years away in the constellation Cancer) a research team led by scientists from Yale University created computer models to determine what the planet is most likely made of.

They determined that 55 Cancri e is composed primarily of carbon (as graphite and diamond), iron, silicon carbide, and possibly some silicates. The researchers estimate that at least a third of the planet’s mass — the equivalent of about three Earth masses — could be diamond.

“This is our first glimpse of a rocky world with a fundamentally different chemistry from Earth. The surface of this planet is likely covered in graphite and diamond rather than water and granite.”

– Nikku Madhusudhan, Yale postdoctoral researcher and lead author

So what would one expect to find on a world made of diamond?

“On this planet there would basically be a thin layer below the surface which will have both graphite and diamond,” Madhusudhan told Universe Today in an email. “But, below that there will be a thick layer (a third of the radius) with mostly diamond. For a large part the diamond will be like the diamond on Earth, except really, really pure.

“But at greater depths the diamond could also be in liquid form,” Madhusudhan added.

Scientists had previously thought that 55 Cancri e might have a lot of water — superheated water, due to the planet’s incredibly high 4,000-degree (F) temperatures — based on the assumption that its composition is similar to Earth’s. But this new research indicates that it doesn’t have much water at all.

“By contrast, Earth’s interior is rich in oxygen, but extremely poor in carbon — less than a part in thousand by mass,” said  Kanani Lee, Yale geophysicist and co-author of the paper.

This study shows that we can’t assume that planets in other systems are made of the same stuff that ours is, even if they are of similar size (and also that diamonds aren’t necessarily a valuable commodity on all worlds!)

The team’s paper “A Possible Carbon-rich Interior in Super-Earth 55 Cancri e” was accepted for publication in the journal Astrophysical Journal Letters. Read more on Yale News here.

Top image by Haven Giguere. Inset image shows visible location of 55 Cancri, by Nikku Madhusudhan using Sky Map Online. 

Early Black Holes were Grazers Rather than Glutonous Eaters

Faint quasars powered by black holes. Image credit NASA/ESA/Yale

Black holes powering distant quasars in the early Universe grazed on patches of gas or passing galaxies rather than glutting themselves in dramatic collisions according to new observations from NASA’s Spitzer and Hubble space telescopes.

A black hole doesn’t need much gas to satisfy its hunger and turn into a quasar, says study leader Kevin Schawinski of Yale “There’s more than enough gas within a few light-years from the center of our Milky Way to turn it into a quasar,” Schawinski explained. “It just doesn’t happen. But it could happen if one of those small clouds of gas ran into the black hole. Random motions and stirrings inside the galaxy would channel gas into the black hole. Ten billion years ago, those random motions were more common and there was more gas to go around. Small galaxies also were more abundant and were swallowed up by larger galaxies.”

Quasars are distant and brilliant galactic powerhouses. These far-off objects are powered by black holes that glut themselves on captured material; this in turn heats the matter to millions of degrees making it super luminous. The brightest quasars reside in galaxies pushed and pulled by mergers and interactions with other galaxies leaving a lot of material to be gobbled up by the super-massive black holes residing in the galactic cores.

Schawinski and his team studied 30 quasars with NASA’s orbiting telescopes Hubble and Spitzer. These quasars, glowing extremely bright in the infrared images (a telltale sign that resident black holes are actively scooping up gas and dust into their gravitational whirlpool) formed during a time of peak black-hole growth between eight and twelve billion years ago. They found 26 of the host galaxies, all about the size of our own Milky Way Galaxy, showed no signs of collisions, such as smashed arms, distorted shapes or long tidal tails. Only one galaxy in the study showed evidence of an interaction. This finding supports evidence that the creation of the most massive black holes in the early Universe was fueled not by dramatic bursts of major mergers but by smaller, long-term events.

“Quasars that are products of galaxy collisions are very bright,” Schawinski said. “The objects we looked at in this study are the more typical quasars. They’re a lot less luminous. The brilliant quasars born of galaxy mergers get all the attention because they are so bright and their host galaxies are so messed up. But the typical bread-and-butter quasars are actually where most of the black-hole growth is happening. They are the norm, and they don’t need the drama of a collision to shine.

“I think it’s a combination of processes, such as random stirring of gas, supernovae blasts, swallowing of small bodies, and streams of gas and stars feeding material into the nucleus,” Schawinski said.

Unfortunately, the process powering the quasars and their black holes lies below the detection of Hubble making them prime targets for the upcoming James Webb Space Telescope, a large infrared orbiting observatory scheduled for launch in 2018.

You can learn more about the images here.

Image caption: These galaxies have so much dust enshrouding them that the brilliant light from their quasars cannot be seen in these images from the NASA/ESA Hubble Space Telescope.