Remembering the “World War I Eclipse”

Credit

The paths of total solar eclipses care not for political borders or conflicts, often crossing over war-torn lands.

Such was the case a century ago this week on August 21st, 1914 when a total solar eclipse crossed over Eastern Europe shortly after the outbreak of World War I.

Known as the “War to End All Wars,” — which, of course, it didn’t — World War I would introduce humanity to the horrors of modern warfare, including the introduction of armored tanks, aerial bombing and poison gas. And then there was the terror of trench warfare, with Allied and Central Powers slugging it out for years with little gain.

Eclipse
The path of the total solar eclipse of August 21st, 1914 laid out across modern day Europe. Credit: Google Maps/Fred Espenak/NASA/GSFC.

But ironically, the same early 20th century science that was hard at work producing mustard gas and a better machine gun was also pushing back the bounds of astronomy. Einstein’s Annus Mirabilis or “miracle year” occurred less than a decade earlier on 1905. And just a decade later in 1924, Edwin Hubble would expand our universe a million-fold with the revelation that “spiral nebulae” were in fact, island universes or galaxies in their own right.

Indeed, it’s tough to imagine that many of these discoveries are less than a century in our past. It was against this backdrop that the total solar eclipse of August 21st, 1914 crossed the eastern European front embroiled in conflict.

Solar eclipses have graced the field of battle before. An annular solar eclipse occurred during the Battle of Isandlwana in 1879 during the Zulu Wars, and a total solar eclipse in 585 B.C. during the Battle of Thales actually stopped the fighting between the Lydians and the Medes.

img537
A photograph of an “eclipse camp” in the Crimea in 1914. Credit: University of Cambridge DSpace.

But unfortunately, no celestial spectacle, however grand, would save Europe from the conflagration war. In fact, several British eclipse expeditions were already en route to parts of Russia, the Baltic, and Crimea when the war broke out less than two months prior to the eclipse with the assassination of Archduke Ferdinand on June 28th, 1914. Teams arrived to a Russia already mobilized for war, and Britain followed suit on August 4th, 1914 and entered the war when Germany invaded Belgium.

You can see an ominous depiction of the path of totality from a newspaper of the day, provided from the collection of Michael Zeiler:

1914_August_22_TSE_The_Graphic_1
An illustration of the 1914 total solar eclipse “scorching” a war-ravaged Europe. Credit: From the collection of Michael Zeiler. Used with permission.

Note that the graphic depicts a Europe aflame and adds in the foreboding description of Omen faustum, inferring that the eclipse might be an “auspicious omen…” eclipses have never shaken their superstitious trappings in the eyes of man, which persists even with today’s fears of a “Blood Moon.”

A race was also afoot against the wartime backdrop to get an expedition to a solar eclipse to prove or disprove Einstein’s newly minted theory of general relativity. One testable prediction of this theory is that gravity bends light, and astronomers soon realized that the best time to catch this in action would be to measure the position of a star near the limb of the Sun — the most massive light bending object in our solar system — during a total solar eclipse. The advent of World War I would scrub attempts to observe this effect during the 1914 and 1916 eclipses over Europe.

An expedition led by astronomer Arthur Eddington to observe an eclipse from the island of Principe off of the western coast of Africa in 1919 declared success in observing this tiny deflection, measuring in less than two seconds of arc. And it was thus that a British expedition vindicated a German physicist in the aftermath of the most destructive war up to that date.

The total solar eclipse of August 21st 1914 was a member of saros cycle 124, and was eclipse number 49 of 73 in that particular series. Eclipses in the same saros come back around to nearly the same circumstances once every triple saros period of 3 times 18 years and 11.3 days, or about every 54+ years, and there was an eclipse with similar circumstances slightly east of the 1914 eclipse in 1968 — the last total eclipse of saros 124 — and a partial eclipse from the same saros will occur again on October 25th, 2022.

All historical evidence we’ve been able to track down suggests that observers that did make it into the path of totality were clouded out at show time, or at very least, no images of the August 21st 1914 eclipse exist today. Can any astute reader prove us wrong? We’d love to see some images of this historical eclipse unearthed!

Starry Night
A simulation of the total solar eclipse of August 21st 1914 as seen from Latvia. Created using Starry Night Education software.

And, as with all things eclipse related, the biggest question is always: when’s the next one? Well, we’ve got another of total lunar eclipse coming right up on October 8th, 2014, again favoring North America. The next total solar eclipse occurs on March 20th, 2015 but is only visible along a path covering the Faroe and Svalbard Islands, with a path crossing the Norwegian Sea.

But, by happy coincidence, we’re also only now three years out this week from the total solar eclipse of August 21st, 2017 that spans the contiguous “Lower 48” of the United States. The shadow of the Moon will race from the northwest and make landfall off of the Pacific coast of Oregon before reaching a maximum duration for totality at 2 minutes and 40 seconds across Missouri, southern Illinois and Kentucky and will then head towards the southeastern U.S. to depart land off of the coast of South Carolina. Millions will witness this event, and it will be the first total solar eclipse for many. A total solar eclipse hasn’t crossed the contiguous United States since 1979, so you could say that we’re “due”!

Credit
The path of the 2017 total solar eclipse across the United States. Credit: Eclipse-Maps.

Already, towns in Kentucky to Nebraska have laid plans to host this event. The eclipse occurs towards the afternoon for residents of the eastern U.S., which typically sees afternoon thunderstorms popping up in the sultry August summer heat. Eclipse cartographer Michael Zeiler states that the best strategy for eclipse chasers three years hence is to “go west, young man…”

It’s fascinating to ponder tales of eclipses past, present, and future and the role that they play in human history… where will you be on August 21st, 2017?

–      Check out Michael Zeiler’s  new site, GreatAmericanEclipse.com

–      Eclipses pop up in science fiction on occasion as well… check out our history spanning eclipse tale Exeligmos.

Our Guide to the Bizarre April 29th Solar Eclipse

The 2013 partial eclipse rising over the Vehicle Assembly Building along the Florida Space Coast. This month's solar eclipse will offer comparable sunset views for eastern Australia. Photo by author.

Will anyone see next week’s solar eclipse? On April 29th, an annular solar eclipse occurs over a small D-shaped 500 kilometre wide region of Antarctica. This will be the second eclipse for 2014 — the first was the April 15th total lunar eclipse — and the first solar eclipse of the year, marking the end of the first eclipse season. 2014 has the minimum number of eclipses possible in one year, with four: two partial solars and two total lunars. This month’s solar eclipse is also a rarity in that it’s a non-central eclipse with one limit. That is, the center of the Moon’s shadow — known as the antumbra during an annular eclipse — will juuuust miss the Earth and instead pass scant kilometres above the Antarctic continent.

The "footprint" of the April 29th solar eclipse. Credit:
The “footprint” of the April 29th solar eclipse. Credit: Eclipse predictions by Fred Espenak, NASA/GSFC.

A solar eclipse is termed “non-central with one limit” when the center of the Moon’s umbra or antumbra just misses the Earth and grazes it on one edge. Jean Meeus and Fred Espenak note that out of 3,956 annular eclipses occurring from 2000 BCE to 3000 AD, only 68 (1.7%) are of the non-central variety. An annular eclipse occurs when the Moon is too distant to cover the disk of the Sun, resulting in a bright “annulus” or “ring-of-fire” eclipse. A fine example of just such an eclipse occurred over Australia last year on May 10th, 2013. An annular eclipse crossed the United States on May 10th, 1994 and will next be seen from the continental U.S. on October 14th 2023. But of course, we’ll see an end the “total solar eclipse drought” long before that, when a total solar eclipse crosses the U.S. on August 21st, 2017!

An animated .gif of the April 29th eclipse. Credit: NASA/GSFC/A.T. Sinclair.
An animated .gif of the April 29th eclipse. Credit: NASA/GSFC/A.T. Sinclair.

The “centrality” of a solar eclipse or how close a solar eclipse comes to crossing the central disk of the Earth is defined as its “gamma,” with 0 being a central eclipse, and 1 as the center of the Moon’s shadow passing 1 Earth radii away from central. All exclusively partial eclipses have a gamma greater than 1. The April 29th eclipse is also unique in that its gamma is very nearly 1.000… in fact, combing the 5,000 year catalog of eclipses reveals that no solar eclipse from a period of 2000 B.C. to 3000 A.D. comes closer to this value. The solar eclipses of October 3rd, 2043 and March 18th, 1950 are, however very similar in their geometry. Guy Ottewell notes in his 2014 Astronomical Calendar that the eclipses of August 29th, 1486 and January 8th, 2141 also come close to a gamma of 1.000. On the other end of the scale, the solar eclipse of July 11th 1991 had a gamma of nearly zero. This eclipse is part of saros series 148 and is member 21 of 75. This series began in 1653 and plays out until 2987 AD. This saros will also produce one more annular eclipse on May 9th 2032 before transitioning to a hybrid and then producing its first total solar eclipse on May 31st, 2068. But enough eclipse-geekery. Do not despair, as several southern Indian Ocean islands and all of Australia will still witness a fine partial solar eclipse from this event. Antarctica has the best circumstances as the Sun brushes the horizon, but again, the tiny sliver of “annularity” touches down over an uninhabited area between the Dumont d’Urville and Concordia  stations currently occupied by France… and it just misses both! And remember, its astronomical fall headed towards winter “down under,” another strike against anyone witnessing it from the polar continent. A scattering of islands in the southern Indian Ocean will see a 55% eclipsed Sun. Circumstances for Australia are slightly better, with Perth seeing a 55% eclipsed Sun and Sydney seeing a 50% partial eclipse.

The view of the eclipse from multiple locations across the Australian continent at 7:00 UT on April 29th. Created by the author using Stellarium.
The view of the eclipse from multiple locations across the Australian continent at 7:00 UT on April 29th. Created by the author using Stellarium.

Darwin,  Bali Indonesia and surrounding islands will see the Moon just nick the Sun and take a less than 20% “bite” out of it. Observers in Sydney and eastern Australia also take note: the eclipse occurs low to the horizon to the west at sunset, and will offer photographers the opportunity to grab the eclipse with foreground objects. Viewing a partial solar eclipse requires proper eye protection throughout all phases. The safest method to view a partial solar eclipse is via projection, and this can be done using a telescope (note that Schmidt-Cassegrain scopes are bad choice for this method, as they can heat up quickly!) or nothing more sophisticated than a spaghetti strainer to create hundreds of little “pinhole projectors.”

A simulation of the view that no one will see: the annular eclipse one kilometre above latitude 71S longitude 131E above the Antarctic. Created using Stellarium.
A simulation of the view that no one will see: the annular eclipse as seen hovering one kilometre above the Antarctic at latitude 71S longitude 131E . Created using Stellarium.

And although no human eyes may witness the annular portion of this eclipse, some orbiting automated ones just might. We ran some simulations using updated elements, and the European Space Agency’s Sun observing Proba-2 and the joint NASA/JAXA Hinode mission might just “thread the keyhole” and will witness a brief central eclipse for a few seconds on April 29th: And though there’ll be few webcasts of this remote eclipse, the ever-dependable Slooh is expected to carry the eclipse on April 29th. Planning an ad hoc broadcast of the eclipse? Let us know! As the eclipse draws near, we’ll be looking at the prospects for ISS transits and more. Follow us as @Astroguyz as we look at these and other possibilities and tell our usual “tales of the saros”. And although this event marks the end of eclipse season, its only one of two such spans for 2014… tune in this October, when North America will be treated to another total lunar eclipse on the 8th and a partial solar eclipse on the 23rd… more to come! Send in those eclipse pics to the Universe Today Flickr community… you just might find yourself featured in this space!

The Birth of a Saros – This Weekend’s Hidden Eclipse

(Photo by Author)

As the first eclipse season of 2013 comes to an end this weekend, an extremely subtle lunar eclipse occurs on the night of Friday, May 24th going into the morning of Saturday, May 25th. And we do mean subtle, as in invisible to the naked eye… this eclipse only lasts 34 minutes in duration and less than 2% of the disk of the Moon enters the bright outer penumbra of the Earth’s shadow!

So, why talk about such a non-event at all?

Great things come from such humble beginnings. And while this weekend’s eclipse is one mostly for the almanacs and astronomical tables rather than a true observational event, it also marks the start of a new lunar saros cycle.

This weekend’s eclipse is one of five for 2013, a year which contains two solars and three lunars. This eclipse marks the end of the first “eclipse season” of the year, a time when the intersection of the Moon’s orbit (known as nodes) and the ecliptic nearly coincide with the position of the Sun (for a solar eclipse at New Moon) and the Earth’s shadow (for a lunar eclipse at Full Moon).

The current season began with a very slight partial eclipse on April 25th, followed by an annular eclipse on May 10th. It will last only 33 minutes and 45 seconds in duration starting at 03:53:11 UTC on May 25th. The Moon will be high over the Americas at the time, but again, shading on the southern limb of the Moon will be too slight to be seen.

Curiously, SLOOH will be providing live coverage of the eclipse, although again, it will be too slight to see.

Starry Night
The Full Moon just nicks the Earth’s penumbra in the early morning hours of May 25th. (Created by the author in Starry Night).

What is a saros? A saros is a period of 18 years 11 days and 8 hours after which an eclipse cycle lines up, producing a similar eclipse to the one that preceded it 18 years before. Note that due to its 8 hour offset, the Earth will have rotated 120° and the visibility region will have shifted westward.

In said period, three lunar cycles very nearly line up;

The Anomalistic month (the period the Moon takes to go from one perigee to another) = 27.555 days.

The Draconic month (the period the Moon takes to return to the same node) = 27.212 days.

The Synodic month (the most familiar one, the period between similar phases) = 29.531 days.

Note that:

239 Anomalistic months = 239×27.555= 6585.645 days.

242 Draconic months = 242×27.212=6585.304 days.

223 Synodic months = 223×29.531=6585.413 days.

There’s that mis-alignment of a third of a day again (8 hours) for every 18 years and 11 days. This also causes the node of each eclipse in the cycle to drift eastward by 0.5° along the ecliptic. Thus, each eclipse isn’t exactly the same. A lunar saros series starts with a very brief penumbral like this weekend’s, becomes deeper and deeper every 18+ year period until partial and total eclipses begin centuries down the road. Thereafter, the cycle reverses, until a final faint penumbral marks the end of the lunar saros.

diagram
The progression of selected eclipses of the same saros cycle. (Credit: Matthew Zimmerman. Wikimedia Commons graphic in the Public Domain).

After this weekend’s eclipse, the next start of a lunar saros won’t occur until November 8th 2060 with the start of saros 156. The last new saros series (number 149) began on June 13th, 1984.

There are numbered saros series for both lunar and solar eclipses. There are currently 41 saroses (the plural of saros) active with the inclusion of this weekend’s start of lunar saros 150.

Saros 150, of which this eclipse is the 1st of 71, will last for just over 1,262 years. It will begin to produce partial eclipses on August 20th, 2157 and produce its 1st total on its 32nd lunar eclipse on April 29th, 2572.

It amazes me that ancient cultures such as the Chaldeans new of saros cycles and could predict eclipses. Being geographically isolated, lunar eclipse cycles would have been easier to decipher than solar ones, as you only have to be on the Moonward facing hemisphere of the Earth to witness the eclipse. They may well have stumbled upon the saros while attempting to calculate a slightly longer 19 year period known as a Metonic cycle to align ancient luni-solar calendars.

And yes, that 8 hour offset also means that after a triple saros period, lunar and solar eclipses of the same saros series do return to roughly the same longitude every 54 years & 34 days. This is known as an exeligmos, and if you get this on a triple-word score in Scrabble, you can safely retire from the game.

NASA
The theoretical visibility circumstances for this week’s penumbral eclipse. (Credit: F. Espenak/NASA/GSFC).

And while this eclipse is more of academic than observational interest, you can always enjoy the light of a brilliant Full Moon. The May Full Moon is referred to as the Flower, Milk, and Corn Planting Moon by the Algonquian Indians of North America, alluding the latent season of Spring.

Also, keep an eye out for several conjunctions and occultations this week by the Moon with bright stars and planets.

The first up is the bright star Spica (Alpha Virginis) which gets occulted by the waxing gibbous Moon around ~11:00 UT on Wednesday, May 22nd for viewers across northern Australia, southern Asia and the South Pacific. Spica is one of four stars brighter than magnitude +1.5 that the Moon can occult, the others being Antares, Aldebaran and Regulus. This is the 6th occultation in a cycle of 13 of Spica by the Moon spanning 2013.

The planet Saturn will lie about 4° north of the waxing gibbous Moon on the following evening of May 23rd.

Also, watch for an occultation of the +2.6th magnitude star Beta Scorpii on the evening of May 24th around the time of the lunar eclipse. This will be a difficult one, as the Moon will be near 100% illumination. Conjunction of the Moon and Beta Scorpii in right ascension occurs at 3:04 UT on May 25th, about 2.5 hours after Full. The occultation will span the southeastern US, Caribbean, northern South America and western Africa.

Created by Author
Visibility path of the occultation of Beta Scorpii by the Moon. (Credit: Occult 4.1.0.2).

2013 isn’t a grand year for eclipses. We’ve got two more in the late season of the year, another slightly deeper penumbral on October 18th and a hybrid solar eclipse on November 3rd. And when, may you ask, will we FINALLY have another total lunar eclipse? Stick around ‘til U.S. Tax Day next year (April 15th 2014) for a total lunar eclipse spanning the Americas!