The Mars Project! Von Braun’s Ideas for a Mars Mission. Collaboration with Vintage Space

Humans to Mars!

Did you know that it’s been almost 45 years since humans walked on the surface of the Moon? Of course you do. Anyone who loves space exploration obsesses about the last Apollo landings, and counts the passing years of sadness.

Sure, SpaceX, Blue Origins and the new NASA Space Launch Systems rocket offer a tantalizing future in space. But 45 years. Ouch, so much lost time.

What would happen if we could go back in time? What amazing and insane plans did NASA have to continue exploring the Solar System? What alternative future could we have now, 45 years later?

In order to answer this question, I’ve teamed up with my space historian friend, Amy Shira Teitel, who runs the Vintage Space blog and YouTube Channel. We’ve decided to look at two groups of missions that never happened.

In her part, Amy talks about the Apollo Applications Program; NASA’s original plans before the human exploration of the Moon was shut down. More Apollo missions, the beginnings of a lunar base, and even a human flyby of Venus.

In my half of the series, I look at Werner Von Braun’s insanely ambitious plans to send a human mission to Mars. Put it together with Amy’s episode and you can imagine a space exploration future with all the ambition of the Kerbal Space Program.

Keep mind here that we’re not going to constrain ourselves with the pesky laws of physics, and the reality of finances. These ideas were cool, and considered by NASA engineers, but they weren’t necessarily the best ideas, or even feasible.

So, 2 parts, tackle them in any order you like. My part begins right now.

Werner Von Braun, of course, was the architect for NASA’s human spaceflight efforts during the space race. It was under Von Braun’s guidance that NASA developed the various flight hardware for the Mercury, Gemini and Apollo missions including the massive Saturn V rocket, which eventually put a human crew of astronauts on the Moon and safely returned them back to Earth.

Wernher von Braun. Credit: NASA/Marshall Space Flight Center

Von Braun was originally a German rocket scientist, pivotal to the Nazi “rocket team”, which developed the ballistic V-2 rockets. These unmanned rockets could carry a 1-tonne payload 800 kilometers away. They were developed in 1942, and by 1944 they were being used in war against Allied targets.

By the end of the war, Von Braun coordinated his surrender to the Allies as well as 500 of his engineers, including their equipment and plans for future rockets. In “Operation Paperclip”, the German scientists were captured and transferred to the White Sands Proving Ground in New Mexico, where they would begin working on the US rocket efforts.

Von Braun and others standing in front a V-2 rocket engine at White Sands. Credit: U.S. Army/ Ordway Collection/Space Rocket Center

Before the work really took off, though, Von Braun had a couple of years of relative downtime, and in 1947 and 1948, he wrote a science fiction novel about the human exploration of Mars.

The novel itself was never published, because it was terrible, but it also contained a detailed appendix containing all the calculations, mission parameters, hardware designs to carry out this mission to Mars.

The Mars Project

In 1952, this appendix was published in Germany as “Das Marsproject”, or “The Mars Project”. And an English version was published a few years later. Collier’s Weekly Magazine did an 8-part special on the Mars Project in 1952, captivating the world’s imagination.

Here’s the plan: In the Mars Project, Von Braun envisioned a vast armada of spaceships that would make the journey from Earth to Mars. They would send a total of 10 giant spaceships, each of which would weigh about 4,000 tonnes.

Just for comparison, a fully loaded Saturn V rocket could carry about 140 tonnes of payload into Low Earth Orbit. In other words, they’d need a LOT of rockets. Von Braun estimated that 950 three-stage rockets should be enough to get everything into orbit.

Ships being assembled in orbit. Credit: Collier’s

All the ships would be assembled in orbit, and 70 crewmembers would take to their stations for an epic journey. They’d blast their rockets and carry out a Mars Hohmann transfer, which would take them 8 months to make the journey from Earth to Mars.

The flotilla consisted of 7 orbiters, huge spheres that would travel to Mars, go into orbit and then return back to Earth. It also consisted of 3 glider landers, which would enter the Martian atmosphere and stay on Mars.

Once they reached the Red Planet, they would use powerful telescopes to scan the Martian landscape and search for safe and scientifically interesting landing spots. The first landing would happen at one of the planet’s polar caps, which Von Braun figured was the only guaranteed flat surface for a landing.

A rocket-powered glider descending towards Mars. Credit: Collier’s

At this point, it’s important to note that Von Braun assumed that the Martian atmosphere was about as thick as Earth’s. He figured you could use huge winged gliders to aerobrake into the atmosphere and land safely on the surface.

He was wrong. The atmosphere on Mars is actually only 1% as thick as Earth’s, and these gliders would never work. Newer missions, like SpaceX’s Red Dragon and Interplanetary Transport Ship will use rockets to make a powered landing.

I think if Von Braun knew this, he could have modified his plans to still make the whole thing work.

Landed at the polar cap. Credit: Collier’s

Once the first expedition landed at one of the polar caps, they’d make a 6,400 kilometer journey across the harsh Martian landscape to the first base camp location, and build a landing strip. Then two more gliders would detach from the flotilla and bring the majority of the explorers to the base camp. A skeleton crew would remain in orbit.

Once again, I think it’s important to note that Von Braun didn’t truly understand how awful the surface of Mars really is. The almost non-existent atmosphere and extreme cold would require much more sophisticated gear than he had planned for. But still, you’ve got to admire his ambition.

Preparing the gliders for rocket-powered ascent. Credit: Collier’s

With the Mars explorer team on the ground, their first task was to turn their glider-landers into rockets again. They would stand them up and get them prepped to blast off from the surface of Mars when their mission was over.

The Martian explorers would set up an inflatable habitat, and then spend the next 400 days surveying the area. Geologists would investigate the landscape, studying the composition of the rocks. Botanists would study the hardy Martian plant life, and seeing what kinds of Earth plants would grow.

Zoologists would study the local animals, and help figure out what was dangerous and what was safe to eat. Archeologists would search the region for evidence of ancient Martian civilizations, and study the vast canal network seen from Earth by astronomers. Perhaps they’d even meet the hardy Martians that built those canals, struggling to survive to this day.

Once again, in the 1940s, we thought Mars would be like the Earth, just more of a desert. There’d be plants and animals, and maybe even people adapted to the hardy environment. With our modern knowledge, this sounds quaint today. The most brutal desert on Earth is a paradise compared to the nicest place on Mars. Von Braun did the best he could with the best science of the time.

Finally, at the end of their 400 days on Mars, the astronauts would blast off from the surface of Mars, meet up with the orbiting crew, and the entire flotilla would make the return journey to Earth using the minimum-fuel Mars-Earth transfer trajectory.

The planned trajectories to and from Mars. Credit: Collier’s

Although Von Braun got a lot of things wrong about his Martian mission plan, such as the thickness of the atmosphere and habitability of Mars, he got a lot of things right.

He anticipated a mission plan that required the least amount of fuel, by assembling pieces in orbit, using the Hohmann transfer trajectory, exploring Mars for 400 days to match up Earth and Mars orbits. He developed the concept of using orbiters, detachable landing craft and ascent vehicles, used by the Apollo Moon missions.

The missions never happened, obviously, but Von Braun’s ideas served as the backbone for all future human Mars mission plans.

I’d like to give a massive thanks to the space historian David S.F. Portree. He wrote an amazing book called Humans to Mars, which details 50 years of NASA plans to send humans to the Red Planet, including a fantastic synopsis of the Mars Project.

I asked David about how Von Braun’s ideas influenced human spaceflight, he said it was his…

“… reliance on a conjunction-class long-stay mission lasting 400 days. That was gutsy – in the 1960s, NASA and contractor planners generally stuck with opposition-class short-stay missions. In recent years we’ve seen more emphasis on the conjunction-class mission mode, sometimes with a relatively short period on Mars but lots of time in orbit, other times with almost the whole mission spent on the surface.”

Elon Musk and the SpaceX Odyssey: the Path from Falcon 9 to Mars Colonization Transporter

In Kubrick’s and Clark’s 2001 Space Odyssey, there was no question of “Boots or Bots”[ref]. The monolith had been left for humanity as a mileage and direction marker on Route 66 to the stars. So we went to Jupiter and Dave Bowman overcame a sentient machine, shut it down cold and went forth to discover the greatest story yet to be told.

Now Elon Musk, born three years after the great science fiction movie and one year before the last Apollo mission to the Moon has set his goals, is achieving milestones to lift humans beyond low-Earth orbit, beyond the bonds of Earth’s gravity and take us to the first stop in the final frontier – Mars – the destination of the SpaceX odyssey.

Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)
Marvel claims Musk as the inspiration for Tony Stark in Ironman but for countless space advocates around the World he is the embodiment of Dave Bowman, the astronaut in 2001 Space Odyssey destined to travel to the edge of the Universe and retire an old man on Mars. (Photo Credit: NASA, MGM, Paramount Pictures, Illustration – Judy Schmidt)

Ask him what’s next and nowhere on his bucket list does he have Disneyland or Disney World. You will find Falcon 9R, Falcon Heavy, Dragon Crew, Raptor Engine and Mars Colonization Transporter (MCT).

At the top of his working list is the continued clean launch record of the Falcon 9 and beside that must-have is the milestone of a soft landing of a Falcon 9 core. To reach this milestone, Elon Musk has an impressive array of successes and also failures – necessary, to-be-expected and effectively of equal value. His plans for tomorrow are keeping us on the edge of our seats.

The Dragn Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)
The Dragon Crew capsule is more than a modernized Apollo capsule. It will land softly and at least on Earth will be reusable while Musk and SpaceX dream of landing Falcon Crew on Mars. (Photo Credits: SpaceX)

CRS-5, the Cargo Resupply mission number 5, was an unadulterated success and to make it even better, Elon’s crew took another step towards the first soft  landing of a Falcon core, even though it wasn’t entirely successful. Elon explained that they ran out of hydaulic fluid. Additionally, there is a slew of telemetry that his engineers are analyzing to optimize the control software. Could it have been just a shortage of fluid? Yes, it’s possible they could extrapolate the performance that was cut short and recognize the landing Musk and crew dreamed of.

A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)
A successful failure of a soft landing had no baring on the successful launch of the CRS-5, the cargo resupply mission to ISS. (Image Credits: SpaceX)

The addition of the new grid fins to improve control both assured the observed level of success and also assured failure. Anytime one adds something unproven to a test vehicle, the risk of failure is raised. This was a fantastic failure that provided a treasure trove of new telemetry and the possibilities to optimize software. More hydraulic fluid is a must but improvements to SpaceX software is what will bring a repeatable string of Falcon core soft landings.

“Failure is not an option,” are the famous words spoken by Eugene Kranz as he’s depicted in the movie Apollo 13. Failure to Elon Musk and to all of us is an essential part of living. However, from Newton to Einstein to Hawking, the equations to describe and define how the Universe functions cannot show failure otherwise they are imperfect and must be replaced. Every moment of a human life is an intertwined array of success and failure. Referring only to the final frontier, in the worse cases, teams fall out of balance and ships fall out of the sky. Just one individual can make a difference between his or a team’s success. Failure, trial and error is a part of Elon’s and SpaceX’s success.

Only the ULA Delta IV Heavy image is real. TBC - to be completed - is the status of Delta Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun's Saturn rocket of the d1960s. (Credits: SpaceX, ULA)
Only the ULA Delta IV Heavy image is real. TBC – to be completed – is the status of Falcon Heavy. To be launch on its maiden flight in 2015, Falcon Heavy will become the most powerful American-made launch vehicle since Von Braun’s Saturn rocket of the d1960s. (Credits: SpaceX, ULA)

He doesn’t quote or refer to Steve Jobs but Elon Musk is his American successor. From Hyperloops, to the next generation of Tesla electric vehicles, Musk is wasting no time unloading ideas and making his dreams reality. Achieving his goals, making milestones depends also on bottom line – price and performance into profits. The Falcon rockets are under-cutting ULA EELVs (Atlas & Delta) by more than half in price per pound of payload and even more with future reuse. With Falcon Heavy he will also stake claim to the most powerful American-made rocket.

In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)
In both cost and performance the Falcon 9 and Heavy outperform the Delta IV. The Falcon vehicle is disruptive technology. (Illustration: T.Reyes)

Musk’s success will depend on demand for his product. News in the last week of his investments in worldwide space-based internet service also shows his intent to promote products that will utilize his low-cost launch solutions. The next generation of space industry could falter without investors and from the likes of Musk, re-investing to build demand for launch and sustaining young companies through their start-up phases. Build it and they will come but take for granted, not recognize the fragility of the industry, is at your own peril.

So what is next in the SpaceX Odyssey? Elon’s sights remain firmly on the Falcon 9R (Reuse) and the Falcon Heavy. Nothing revolutionary on first appearance, the Falcon Heavy will look like a Delta IV Heavy on steroids. Price and performance will determine its success – there is no comparison. It is unclear what will become of the Delta IV Heavy once the Falcon Heavy is ready for service. There may be configurations of the Delta IV with an upper stage that SpaceX cannot match for a time but either way, the US government is likely to effectively provide welfare for the Delta and even Atlas vehicles until ULA (Lockheed Martin and Boeing’s developed corporation) can develop a competitive solution. The only advantage remaining for ULA is that Falcon Heavy hasn’t launched yet. Falcon Heavy, based on Falcon 9, does carry a likelihood of success based on Falcon 9’s 13 of 13 successful launches over the last 5 years. Delta IV Heavy has had 7 of 8 successful launches over a span of 11 years.

The legacy that Elon and SpaceX stand upon is a century old. William Gerstenmaier, a native of the state of Ohio - First in Flight, associate administrator for NASA Human Spaceflight and past program manager of ISS has been a prime executor of NASA human spaceflight for two decades. Elon Musk shares in common a long-time enthusiasm for space exploration with Gerstenmaier.  From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstron, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk. (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)
The legacy that Elon and SpaceX stand upon is a century old. The Ohio native, William Gerstenmaier, associate administrator for NASA Human Spaceflight and past program manager of ISS, like Musk and so many others, dreamed of space exploration from an early age. From top left, clockwise, Eugene Kranz, Michael Collins, Neil Armstrong, Edwin (Buzz) Aldrin, W. Gerstenmaier, Michael Griffin, NASA Administrator Charles Bolden shaking hands with Elon Musk, the Apollo 11 crew embarking on their famous voyage(center). (Photo Credits: NASA, SpaceX, Illustration, J.Schmidt/T.Reyes)

The convergence of space science and technology and science fiction in the form of Musk’s visions for SpaceX is linked to the NASA legacy beginning with NASA in 1958, accelerated by JFK in 1962 and landing upon the Moon in 1969. The legacy spans backward in time to Konstantin Tsiolkovsky, Robert Goddard, Werner Von Braun and countless engineers and forward through the Space Shuttle and Space Station era.

A snapshot from the  SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk's SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)
A snapshot from the SpaceX webpage describing their successful first flight of the Dragon Cargo vessel on Falcon 9. Musk’s SpaceX could not have achieved so much so quickly without the knowledge and support of NASA. (Credit: SpaceX)

The legacy of Shuttle is that NASA remained Earth-bound for 30-plus years during a time that Elon Musk grew up in South Africa and Canada and finally brought his visions to the United States. With a more daring path by NASA, the story to tell today would have been Moon bases or Mars missions completed in the 1990s and commercial space development that might have outpaced or pale in comparison to today’s. Whether Musk would be present in commercial space under this alternate reality is very uncertain. But Shuttle retirement, under-funding its successor, the Ares I & V and Orion, cancelling the whole Constellation program, then creating Commercial Crew program, led to SpaceX winning a contract and accelerated development of Falcon 9 and the Dragon capsule.

Mars as it might look to the human eye  of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)
Mars as it might look to the human eye of colonists on final approach to the red planet. To Elon Musk, this is the big prize and a place to retire and relish his accomplishments if only for a brief moment. (Credit: NASA)

SpaceX is not meant to just make widgets and profit. Mars is the objective and whether by SpaceX or otherwise, it is the first stop in humankind’s journey into the final frontier. Mars is why Musk developed SpaceX. To that end, the first focal point for SpaceX has been the development of the Merlin engine.

Now, SpaceX’s plans for Mars are focusing on a new engine – Raptor and not a Merlin 2 – which will operate on liquified methane and liquid oxygen. The advantage of methane is its cleaner combustion leaving less exhaust deposits within the reusable engines. Furthermore, the Raptor will spearhead development of an engine that will land on Mar and be refueled with Methane produced from Martian natural resources.

The Raptor remains a few years off and the design is changing. A test stand has been developed for testing Raptor engine components at NASA’s Stennis Space Center. In a January Reddit chat session[ref] with enthusiasts, Elon replied that rather than being a Saturn F-1 class engine, that is, thrust of about 1.5 million lbf (foot-lbs force), his engineers are dialing down the size to optimize performance and reliability. Musk stated that plans call for Raptor engines to produce 500,000 lbf (2.2 million newtons) of thrust. While smaller, this represents a future engine that is 3 times as powerful as the present Merlin engine (700k newtons/157 klbf). It is 1/3rd the power of an F-1. Musk and company will continue to cluster engines to make big rockets.

The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X  1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V's thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)
The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X 1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V’s thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)

To achieve their ultimate goal – Mars colonization, SpaceX will require a big rocket. Elon Musk has repeatedly stated that a delivery of 100 colonists per trip is the present vision. The vision calls for the Mars Colonization Transporter (MCT). This spaceship has no publicly shared SpaceX concept illustrations as yet but more information is planned soon. A few enthusiasts on the web have shared their visions of MCT. What we can imagine is that MCT will become a interplanetary ferry.

The large vehicle is likely to be constructed in low-Earth orbit and remain in space, ferrying colonists between Earth orbit and Mars orbit. Raptor methane/LOX engines will drive it to Mars and back. Possibly, aerobraking will be employed at both ends to reduce costs. Raptor engines will be used to lift a score of passengers at a time and fill the living quarters of the waiting MCT vehicle. Once orbiting Mars, how does one deliver 100 colonists to the surface? With atmospheric pressure at its surface equivalent to Earth’s at 100,000 feet, Mars does not provide an Earth-like aerodynamics to land a large vehicle.

In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)
In between launching V-2s in New Mexico and developing rockets at Redstone Arsenal, Von Braun had time to write Mars Projekt (1952) in which he outlined a mission to Mars delivering 70 explorers. Much has changed since that early vision but some of his concepts may still become a reality and solve the problem of sending SpaceX colonists to Mars. (Credit: Mars Project, Von Braun)

In 1952, Werner Von Braun in his book “Mars Projekt” envisioned an armada of ships, each depending on launch vehicles much larger than the Saturn V he designed a decade later. Like the invading Martians of War of the Worlds, the armada would rather converge on Mars and deploy dozens of winged landing vehicles that would use selected flat Martian plain to skid with passengers to a safe landing. For now, Elon and SpaceX illustrate the landing of Dragon capsules on Mars but it will clearly require a much larger lander. Perhaps, it will use future Raptors to land softly or possibly employ winged landers such as Von Braun’s after robotic Earth-movers on Mars have constructed ten or twenty mile long runways.

We wait and see what is next for Elon Musk’s SpaceX vision, his SpaceX Odyssey. For Elon Musk and his crew, there are no “wives” – Penelope and families awaiting their arrival on Mars. Their mission is more than a five year journey such as Star Trek. The trip to Mars will take the common 7 months of a Hohmann transfer orbit but the mission is really measured in decades. In the short-term, Falcon 9 is poised to launch again in early February and will again attempt a soft landing on a barge at sea. And later, hopefully, in 2015, the Falcon Heavy will make its maiden flight from Cape Canaveral’s rebuilt launch pad 39A where the Saturn V lifted Apollo 11 to the Moon and the first, last and many Space Shuttles were launched.

References:

National Aeronatics and Space Administration

Space Exploration Web Pages

Happy Birthday to my sister Sylvia who brought home posters, literature and interest from North American-Rockwell in Downey during the Apollo era and sparked my interest.