X-37B Secret Air Force Spaceplane Blasts Off on SpaceX Falcon 9 as Monster Hurricane Irma Threatens Florida Peninsula

USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Amidst the frenzy of ‘Sunshine State’ preparations for Cat 5 monster Hurricane Irma and quite dismal weather favorability odds, the skies surrounding the Florida Space Coast suddenly parted just in the nick of time enabling the Air Force’s secret military X-37B spaceplane to blast off this morning (Sept. 7) on a SpaceX Falcon 9 as the booster nailed another thrilling ground landing back at the Cape.

The SpaceX Falcon 9 roared to life at 10 a.m. EDT (1400 UTC) Thursday morning and soared aloft from seaside Launch Complex 39A on NASA’s Kennedy Space Center into nearly clear blue skies after the classified launch time was kept guarded until just 10 minutes before liftoff.

Due to the potential for catastrophic destruction from approaching Hurricane Irma this was the last chance for the X-37B to escape Florida to orbit before the Kennedy Space Center and Cape Canaveral Air Force Station almost certainly close on Friday, the backup launch opportunity.

The X-37B OTV spaceplane reached orbit as planned on SpaceX’s 13th launch of the year.

“The 45th Space Wing successfully launched a SpaceX Falcon 9 launch vehicle Sept. 7, 2017, from Kennedy Space Center’s Launch Complex 39A,” the USAF and 45th Space Wing confirmed in a post launch statement.

The Falcon 9 launch was absolutely gorgeous taking place under near perfect weather conditions at launch time and putting on a long sky show as the rocket accelerated to orbit with its precious cargo.

USAF X-37B military spaceplane blasts off with picturesque water reflections at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The nine Merlin 1D first stage engines ignited to generate a combined 1.7 million pounds of thrust fueled by liquid oxygen and RP-1 propellants, sending a huge exhaust plume billowing from behind as the rocket ascended off pad 39A and thundered aloft.

After first stage burnout and main engine cutoff the stages separated at T plus 2 min 26 seconds.

After successfully delivering the secret USAF mini-shuttle to orbit, SpaceX engineers completed the 2nd half of the double headed space spectacular when the Falcon 9 first stage booster successfully made a guided soft landing back at Cape Canaveral Air Force Station (CCAFS).

The boosters high speed descent generated multiple shockingly loud sonic booms as the 156-foot-tall first stage approached SpaceX’s dedicated Landing Zone-1 (LZ-1) on CCAFS that reverberated for dozens and dozens of miles across and beyond the Space coast region.

The mid-morning daylight first stage precision guided landing offered spectators a magnificent up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching people and payloads to space.

SpaceX Falcon 9 first stage fires Merlin 1D engine in final moments of descent to accomplish successful propulsive touchdown at Landing Zone-1 (LZ-1) after SpaceX launched the USAF X-37B military spaceplane on its 5th flight to space on the OTV-5 mission at 10 a.m. EDT (1400 UTC) Sept. 7, 2017 from pad 39A at KSC. Credit: Ken Kremer/Kenkremer.com

Meanwhile, Hurricane Irma continues barreling towards Florida packing winds of 185 mph as one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

Here’s the latest storm track updated to Friday morning Sep 8:

Hurricane Irma Cone forecast on Sept 8, 2017 from the National Hurricane Center. Credit: NHC

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall for the U.S. Air Force Rapid Capabilities Office.

“The OTV is designed to demonstrate reusable spacecraft technologies for America’s future in space and operate experiments, which can be returned to and examined on Earth,” said the USAF.

Launch of the SpaceX Falcon 9 on Sept. 7 , 2017 carrying the X-37B mini-shuttle to orbit for the USAF. Credit: Julian Leek

Also known as the Orbital Test Vehicle, the X-37B launched on the OTV-5 mission marks the programs maiden liftoff on the 230-foot-tall SpaceX Falcon 9.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California of Florida.

USAF X-37B military mini-shuttle lifts off at 10 a.m. EDT Sept. 7, 2017 on a SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

The X-37B launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The Boeing-built X-37B is processed for flight at the Kennedy Space Center, FL, using refurbished former NASA space shuttle processing facilities (OPFs) now dedicated to the reusable mini-shuttle, also named the Orbital Test Vehicle (OTV).

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

The last blastoff of the X-37B took place more than 2 years ago on May 20, 2015 when the OTV-4 mission launched on a ULA Atlas V on May 20, 2015 from Space Launch Complex-41 on Cape Canaveral Air Force Station.

After spending a record setting 718 days in orbit, the X-37B vehicle completed its fourth mission with a runway landing back at KSC’s Shuttle Landing Facility earlier this year on May 7, 2017.

Overall the OTV unmanned spacecraft have spent a total of 2,085 days in orbit.

The 11,000 pound (4990 kg) state-of-the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Sept. 7 , 2017 liftoff of the SpaceX Falcon 9 on Sept. 7, 2017 carrying the X-37B mini-shuttle to orbit for the USAF. Credit: Jeff Seibert
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

X-37B Air Force Space Plane Launches on 4th Mystery Military Mission and Solar Sailing Test

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com
Story updated with additional details and photos[/caption]

The X-37B, a reusable Air Force space plane launched today, May 20, from Cape Canaveral, Florida, on its fourth mission steeped in mystery as to its true goals for the U.S . military and was accompanied by ten tiny cubesat experiments for NASA and the NRO, including a solar sailing demonstration test for The Planetary Society.

The military space plan successfully blasted off for low Earth orbit atop a 20 story United Launch Alliance (ULA) Atlas V rocket on the clandestine Air Force Space Command 5 (AFSPC-5) satellite mission for the U.S. Air Force Rapid Capabilities Office at 11:05 a.m. EDT (1505 GMT) today, May 20, from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida.

The weather cooperated for a spectacular liftoff from the Florida space coast, which was webcast live by ULA until five minutes after launch when it went into a communications blackout shortly after announcing the successful ignition of the Centaur upper stage.

The exact launch time was classified until it was released by the Department of Defense this morning. Early this morning the four hour launch window was narrowed down to two small windows of opportunity.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

Among the experiments for the flight are 10 CubeSats housed in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage. Together they are part of the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). The 10 CubeSats in ULTRASat are managed by the NRO and NASA. They are contained in eight P-Pods from which they will be deployed in the coming days.

Also aboard the X-37B is a NASA materials science experiment called METIS and an advanced Hall thruster experiment. The Hall thruster is a type of electric propulsion device that produces thrust by ionizing and accelerating a noble gas, usually xenon.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and The Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. Photons from the sun should push on the solar sails.

“The purpose of this LightSail demonstration test is to verify telemetry, return photos return and to test the deployment of the solar sails,” said Bill Nye, the Science Guy), and President of The Planetary Society, during the X-37B launch webcast.

“LightSail is comprised of three CubeSats that measure about 30 cm by 10 cm.”

“It’s smaller than a shoebox, everybody! And the sail that will come out of it is super shiny mylar. We’re very hopeful that the thing will deploy properly, the sunlight will hit it and we’ll get a push.”

United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

“ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the AFSPC-5 mission” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

The two stage Atlas V stands 206 feet tall and weighs 757,000 pounds.

The X-37B was carried to orbit by the Atlas V in its 501 configuration which includes a 5.4-meter-diameter payload fairing and no solid rocket motors. The Atlas first stage booster for this mission was powered by the RD AMROSS RD-180 engine generating some 850,000 pounds of thrust and fired for approximately the first four and a half minutes of flight. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The X-37B space plane was to separate from the Centaur about 19 minutes after liftoff. The Centaur continued firing separately with the CubeSat deployment, including the Planetary Society’s LightSail test demoonstration, into a different orbit later.

Overall this was ULA’s sixth launch of the 501 configuration the 54th mission to launch on an Atlas V rocket. This was also ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006.

The OTV is somewhat like a miniature version of NASA’s space shuttles.

Boeing has built two OTV vehicles. But it is not known which of the two vehicles was launched today.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch.  Credit: Ken Kremer/kenkremer.com
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA

Air Force X-37B Spaceplane Launches on May 20 with Military, NASA and LightSail Payloads: Watch Live

Fourth flight of the secretive U.S. Air Force X-37B Orbital Test Vehicle is set for blastoff on May 20, 2015 from Cape Canaveral, Florida. Photo: Boeing
Story updated with further details and photos[/caption]

All systems are currently “GO” for the fourth launch of the US Air Force’s secretive unmanned, X-37B military space plane this Wednesday, May 20, on a flight combining both US national security experimental payloads as well as civilian science experiments sponsored by NASA, US Universities, commercial companies, and the solar sailing LightSail test from the Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. It will launch as a separate cubesat experiment. NASA also has an advanced materials science experiment flying aboard the robotically controlled X-37B.

The X-37B is set for blastoff atop a two stage United Launch Alliance (ULA) Atlas V 501 rocket on the AFSPC-5 mission under contract for the U.S. Air Force Rapid Capabilities Office.

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane.

Although virtually all the goals of the X-37B program are shrouded in secrecy, some details on the national security objectives have emerged and there are several unclassified experiments flying along as secondary objectives on the rocket and space plane, among them are experiments for NASA and the Planetary Society.

LightSail launches aboard the X-37B on May 20, 2015.  Credit: The Planetary Society
LightSail launches aboard the X-37B on May 20, 2015. Credit: The Planetary Society

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

Liftoff will take place from Space Launch Complex (SLC)-41 at Cape Canaveral Air Force Station, Florida, at some point during a four hour launch period that opens at 10:45 a.m. EDT and extends until 2:45 p.m. EDT on May 20.

ULA announced that the Launch Readiness Review was completed on Monday and everything is progressing normally toward the AFSPC-5 launch. The rocket is fully assembled and the space plane is encapsulated inside the 5 meter diameter payload fairing. It rolled out to the pad today, Tuesday, May 19.

You can watch the Atlas launch live via a ULA webcast here: http://www.ulalaunch.com

The ULA webcast begins at 10:45 a.m. EDT on May 20. The precise launch time is classified and won’t be announced until Wednesday morning.

The weather prognosis has improved markedly to a 60 percent chance of favorable weather conditions, up from only a 40 percent chance this past weekend.

The primary weather concerns are for violations of the launch weather rules related to cumulus clouds, surface electric fields, anvil clouds and lightning.

Launch officials are hopeful that acceptable launch conditions will occur sometime during the lengthy four hour launch window.

In the event of a 24 hour delay due to weather or technical issues, the outlook drops to only a 30% chance of favorable weather conditions during the launch window.

The OTV is somewhat like a miniature version of NASA’s space shuttles. Boeing has built two OTV vehicles.

2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandenberg AFB, Calif., on June 16, 2012.  The record setting mission lasted 469 days in earth orbit.  Designed to be launched like a satellite and land like an airplane, the second X-37B Orbital Test Vehicle, built by Boeing for the United States Air Force’s Rapid Capabilities Office, is an affordable, reusable space vehicle. Credit: Boeing. See landing video below
2nd X-37B Orbital Test Vehicle Successfully Completes 1st Flight by landing at Vandernberg AFB, Calif., on June 16, 2012. It is designed to be launched like a satellite and land like an airplane. Credit: Boeing.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and a NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

The OTV-4 mission will shift its focus at least somewhat from tests of the vehicles performance to more on science experiments both with extra capacity available on the Atlas V rocket and payload space aboard the X-37B itself.

“We’re very pleased with the experiments lined-up for our fourth OTV Mission OTV-4,” Walden noted.

“We’ll continue to evaluate improvements to the space vehicle’s performance, but we’re honored to host these collaborative experiments that will help advance the state-of-the-art for space technology

Among the experiments for the flight are 10 CubeSats. They will launch in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage that contains eight P-Pods to release the CubeSats.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft, ULA said in a statement.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and Planetary Society.

NASA is also flying an advanced materials science payload on the X-37B called the Materials Exposure and Technology Innovation in Space (METIS) investigation that will build on more than a decades worth of materials science research on the International Space Station (ISS) research.

“By flying the Materials Exposure and Technology Innovation in Space (METIS) investigation on the X-37B, materials scientists have the opportunity to expose almost 100 different materials samples to the space environment for more than 200 days. METIS is building on data acquired during the Materials on International Space Station Experiment (MISSE), which flew more than 4,000 samples in space from 2001 to 2013, NASA said in a statement.

“By exposing materials to space and returning the samples to Earth, we gain valuable data about how the materials hold up in the environment in which they will have to operate,” said Miria Finckenor, the co-investigator on the MISSE experiment and principal investigator for METIS at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

“Spacecraft designers can use this information to choose the best material for specific applications, such as thermal protection or antennas or any other space hardware.”

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance to launch USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. This up close view of the nose cone holding the secretive  X-37B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com
The X-37B is similar in many ways to NASA's space shuttle - but it is far smaller and unmanned. Photo Credit: Air Force
The X-37B is similar in many ways to NASA’s space shuttle – but it is far smaller and unmanned. Photo Credit: Air Force
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive  X 37-B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive X 37-B shows the umbilical line attachments. Credit: Ken Kremer/kenkremer.com