Tears of the Hunter: Our Guide to the 2016 Orionid Meteor Shower


The month of October is upon us this coming weekend, and with it, one of the better annual meteor showers is once again active: the Orionids.

In 2016, the Orionid meteors are expected to peak on October 22nd at 2:00 UT (10:00 PM U.S. Eastern Time on October 21st) , favoring Europe and Africa in the early morning hours. The shower is active for a one month period from October 2nd to November 2nd, and can vary with a Zenithal Hourly Rate (ZHR) of 10-70 meteors per hour. This year, the Orionids are expected to produce a maximum ideal ZHR of 15-25 meteors per hour. The radiant of the Orionids is located near right ascension 6 hours 24 minutes, declination 15 degrees north at the time of the peak. The radiant is in the constellation of Orion very near its juncture with Gemini and Taurus.

A gallery of Fall meteor shower radiants, including the October Orionids. Image credit: Stellarium
A gallery of Fall meteor shower radiants, including the October Orionids. Image credit: Stellarium

The Moon is at a 55% illuminated, waning gibbous phase at the peak of the Orionids, making 2016 an unfavorable year for this shower, though that shouldn’t stop you from trying. It’s true that the Moon is only 19 degrees east of the radiant in the adjacent constellation Gemini at its peak on the key morning of October 22, though it’ll move farther on through the last week of October.

In previous recent years, the Orionids produced a Zenithal Hourly Rate (ZHR) of 20 (2014) and a ZHR of 30 (2013).

The Orionid meteors strike the Earth at a moderately fast velocity of 66 km/s, and the shower tends to produce a relatively high ratio of fireballs with an r value of = 2.5. The source of the Orionids is none other than renowned comet 1/P Halley. Halley last paid the inner solar system a visit in early 1986, and will once again reach perihelion on July 28, 2061. Let’s see, by then I’ll be…

The orientation of the Earth's shadow vs, the zenith positions of the Sun, Moon and the radiant of the Orionid meteors at the expected peak of the shower on October 22nd. Image adapted from Orbitron
The orientation of the Earth’s shadow vs the zenith positions of the Sun, Moon and the radiant of the Orionid meteors at the expected during the peak of the shower on October 22nd. Image adapted from Orbitron.

Unlike most meteor showers, the Orionids display a very unpredictable maximum – many sources decline to put a precise date on the shower’s expected maximum at all. On some years, the Orionids barely top 10 per hour at their maximum, while on others they display a broad but defined peak. One 1982 study out of Czechoslovakia suggested a twin peak for this shower after looking at activity from 1944 to 1950. All good reasons to be vigilant for Orionids throughout the coming month of October.

And check out this brilliant meteor that lit up the skies over the southern UK this past weekend:

‘Tis the season for cometary dust particles to light up the night sky. Trace the path of a suspect meteor to the club of Orion, and you’ve likely sighted an Orionid meteor. But other showers showers are active in October, including:

The Draconids: Peaking around October 8th, these are debris shed by Comet 21P Giacobini-Zinner. The Draconids are prone to great outbursts, such as the 2011 and 2012 meteor storm, but are expected to yield a paltry ZHR of 10 in 2016.

The Taurids: Late October into early November is Taurid fireball season, peaking with a ZHR of 5 around October 10th (the Southern Taurids) and November 12th (the Northern Taurids).
The Camelopardalids: Another wildcard shower prone to periodic outbursts. 2016 is expected to be an off year for this shower, with a ZHR of 10 topping out on October 5.

And farther afield, we’ve got the Leonids (November 17th) the Geminids (December 14th) and the Ursids (December 22nd) to close out 2016.

A 2015 Orionid captured by a NASA All-Sky camera atop Mt. Lemmon, Arizona. Image credit: NASA.
A 2015 Orionid captured by a NASA All-Sky camera atop Mt. Lemmon, Arizona. Image credit: NASA.

Observing a meteor shower like the Orionids is as simple as finding a dark site with a clear horizon, laying back and watching via good old Mark-1 eyeball. Blocking that gibbous Moon behind a building or hill will also increase your chances of catching an Orionid. Expect rates to pick up toward dawn, as the Earth turns forward and plows headlong into the meteor stream.

You can make a count of what you see and report it to the International Meteor Organization which keeps regular tabs of meteor activity.
Photographing Orionids this year might be problematic, owing to the proximity of the bright Moon, though not impossible. Again, aiming at a wide quadrant of the sky opposite to the Moon might just nab a bright Orionid meteor in profile. We like to just set our camera’s intervalometer to take a sequence of 30” exposures of the sky, and let it do the work while we’re observing visually. Nearly every meteor we’ve caught photographically turned up in later review, a testament to the limits of visual observing.

Clear skies, good luck, and send those Orionid images in the Universe Today’s Flickr forum.

MESSENGER Spies a Meteor Shower… on Mercury

Leonid meteor storms. Taurid meteor swarms. Earth is no stranger to meteor showers, that’s for sure. Now, it turns out that the planet Mercury may experience periodic meteor showers as well.

The news of extraterrestrial meteor showers on Mercury came out of the annual Meeting of the Division of Planetary Sciences of the American Astronomical Society currently underway this week in National Harbor, Maryland. The study was carried out by Rosemary Killen of NASA’s Goddard Spaceflight Center, working with Matthew Burger of Morgan State University in Baltimore, Maryland and Apostolos Christou from the Armagh Observatory in Northern Ireland.  The study looked at data from the MErcury Surface Space Environment Geochemistry and Ranging (MESSENGER) spacecraft, which orbited Mercury until late April of this year. Astronomers published the results in the September 28th issue of Geophysical Research Letters.

Micrometeoroid debris litters the ecliptic plane, the result of millions of years of passages of comets through the inner solar system. You can see evidence of this in the band of the zodiacal light visible at dawn or dusk from a dark sky site, and the elusive counter-glow of the gegenschein.

The orbit of comet 2P Encke. Image credit: NASA/JPL
The orbit of comet 2P Encke. Image credit: NASA/JPL

Researchers have tagged meteoroid impacts as a previous source of the tenuous exosphere tails exhibited by otherwise airless worlds such as Mercury. The impacts kick up a detectable wind of calcium particles as Mercury plows through the zodiacal cloud of debris.

“We already knew that impacts were important in producing exospheres,” says Killen in a recent NASA Goddard press release. “What we did not know was the relative importance of comet streams over zodiacal dust.”

This calcium peak, however, posed a mystery to researchers. Namely, the peak was occurring just after perihelion—Mercury orbits the Sun once every 88 Earth days, and travels from 0.31 AU from the Sun at perihelion to 0.47 AU at aphelion—versus an expected calcium peak predicted by researchers just before perihelion.

Image credit:
STEREO A catches sight of comet 2P Encke. Image credit: NASA/STEREO

A key suspect in the calcium meteor spike dilemma came in the way of periodic Comet 2P Encke. Orbiting the Sun every 3.3 years—the shortest orbit of any known periodic comet—2P Encke has made many passages through the inner solar system, more than enough to lay down a dense and stable meteoroid debris stream over the millennia.

With an orbit ranging from a perihelion at 0.3 AU interior to Mercury’s to 4 AU, debris from Encke visits Earth as well in the form of the November Taurid Fireballs currently gracing the night skies of the Earth.

The Encke connection still presented a problem: the cometary stream is closest to the orbit of Mercury about a week later than the observed calcium peak. It was as if the stream had drifted over time…

Image credit:
Comet 2P Encke, captured by NASA’s MESSENGER spacecraft. Image credit: NASA/Johns Hopkins/APL/SW Research Institute

Enter the Poynting-Robertson effect. This is a drag created by solar radiation pressure over time. The push on cometary dust grains thanks to the Poynting-Robertson effect is tiny, but it does add up over time, modifying and moving meteor streams. We see this happening in our own local meteor stream environment, as once great showers such as the late 19th century Andromedids fade into obscurity. The gravitational influence of the planets also plays a role in the evolution of meteor shower streams as well.

Researchers in the study re-ran the model, using MESSENGER data and accounting for the Poynting-Robertson effect. They found the peak of the calcium emissions seen today are consistent with millimeter-sized grains ejected from Comet Encke about 10,000 to 20,000 years ago. That grain size and distribution is important, as bigger, more massive grains result in a smaller drag force.

Image credit: Kevin Palmer
A 2015 Taurid meteor. Image credit: Kevin Palmer

This finding shows the role and mechanism that cometary debris plays in exosphere production on worlds like Mercury.

“Finding that we can move the location of stream to match MESSENGER’s observations is gratifying, but the fact that the shift agrees with what we know about Encke and its stream from independent source makes us confident that the cause-and-effect relationship is real, says Christou in this week’s NASA Goddard press release.

Launched in 2004, MESSENGER arrived at Mercury in March 2011 and orbited the world for over four years, the first spacecraft to do so. MESSENGER mapped the entire surface of Mercury for the first time, and became the first human-made artifact to impact Mercury on April 30th, 2015.

The joint JAXA/ESA mission BepiColombo is the next Mercury mission in the pipeline, set to leave Earth on 2017 for insertion into orbit around Mercury on 2024.

An interesting find on the innermost world, and a fascinating connection between Earth and Mercury via comet 2P Encke and the Taurid Fireballs.

A Halloween Season ‘Taurid Meteor Swarm’ on Tap for 2015?

Asteroid 2015 TB145 isn’t the only cosmic visitor paying our planet a trick-or-treat visit over the coming week. With any luck, the Northern Taurid meteor shower may put on a fine once a decade show heading into early November.

About once a decade, the Northern Taurid meteor stream puts on a good showing. Along with its related shower the Southern Taurids, both are active though late October into early November.

The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. Image credit: Stellarium
The motion of the radiant of the Northern Taurid meteors from mid-October through mid-November. The shower typically peaks around November 12th annually. Image credit: Stellarium

Specifics for 2015

This year sees the Moon reaching Full on Tuesday October 27th, just a few days before Halloween. The Taurid fireballs, however, have a few things going for them that most other showers don’t. First is implied in the name: the Northern Taurids, though typically exhibiting a low zenithal hourly rate of around 5 to 10, are, well, fireballs, and thus the light-polluting Moon won’t pose much of a problem. Secondly, the Taurid meteor stream is approaching the Earth almost directly from behind, meaning that unlike a majority of meteor showers, the Taurids are just as strong in the early evening as the post midnight early morning hours.  As a matter of fact, we saw a brilliant Taurid just last night from light-polluted West Palm Beach in Florida, just opposite to the Full Moon and a partially cloudy sky.

A 2014 Taurid. Image credit and copyright: Brian who is called Brian
A 2014 Taurid. Image credit and copyright: Brian who is called Brian

In stark contrast to the swift-moving Orionids from earlier this month, expect the Taurid fireballs to trace a brilliant and leisurely slow path across the night sky, moving at a stately 28 kilometre per second (we say stately, as the October Orionids smash into our atmosphere at over twice that speed!)

Ever since the 2005 event, the Northern Taurids seemed to have earned the name as “The Halloween Fireballs” in the meme factory that is the internet. It’s certainly fitting that Halloween should have its very own pseudo-apocalyptic shower. The last good return for the Northern Taurids was 2005-2008, and 2015 may see an upswing in activity as well.

Obviously, something interesting has to be occurring on Comet 2P Encke—the source of the two Taurid meteor streams—to shed the pea-sized versus dust-sized material seen in the Southern and Northern Taurids. With the shortest orbital period 3.3 years of all periodic comets known, the Taurid meteor stream—like Encke itself—follows a shallow path nearly parallel to the ecliptic plane.

Discovered in 1822 by astronomer Johann Encke, Comet 2P Encke has been observed through many perihelion passages over the last few centuries, and passes close to Earth once 33 years, as it last did in 2013.

What constitutes a ‘meteor swarm?’ As with many terms in meteoritics, no hard-and-fast definition of a true ‘meteor swarm’ exists. A meteor storm is generally quoted as having a zenithal hourly rate greater than 1000. Expect activity to be broad over the next few weeks, and the Taurid fireballs always have the capacity to produce the kind of brilliant events captured by security cams and dashboard video cameras that go viral across ye ole Internet.

Watching for fireballs is a thrilling pursuit. These may often leave persistent glowing meteor trails in their wake.  We caught the 1998 Leonids from the dark sky deserts of Kuwait, and can attest to the persistence of glowing fireball trails from this intense storm, sometimes for minutes. Again, the 2015 Taurids aren’t expected to reach that level of intensity, though the ratio of fireballs to faint meteors will be enhanced.

The path of the stream isn’t fully understood, and that is where volunteer observations can come in handy. The International Meteor Organization is always looking for reports from skilled observers, as is the American Meteor Society (AMS).

Image Credit:
The light curve of the suspected Taurid that hit the Moon on Nov 7th. Image Credit: NASA

There’s even been evidence for a recorded meteorite strike related to the northern Taurid fireballs back in 2015 on the dark limb of the Moon as well, a rare event indeed.

After a slow summer, Fall meteor shower activity is definitely heating up. And though 2015 is an off year for the November Leonids, we’re now almost midway between the 1998-99 outbursts, and the possibility of another grand meteor storm in the early 2030s. And another obscure wildcard shower known as the Alpha Monocerotids may put on a surprise showing in November 2015 as well…

Bright Meteor 4th November 2013 from Richard Fleet on Vimeo.

More to come on that. Keep watching the skies, and don’t forget to tweet those Northern Taurid fireball sightings and images to #Meteorwatch!

-Got an image of a Northern Taurid fireball? Send ‘em in to Universe Today for our Flickr forum… we may just feature your pic in an after action round up!