Hubble Telescope Zooms In On Mars

This image shows our neighbouring planet Mars, as it was observed shortly before opposition in 2016 by the NASA/ESA Hubble Space Telescope. Some prominent features of the planet are clearly visible: the ancient and inactive shield volcano Syrtis Major; the bright and oval Hellas Planitia basin; the heavily eroded Arabia Terra in the centre of the image; the dark features of Sinus Sabaeous and Sinus Meridiani along the equator; and the small southern polar cap.
On May 12, the Hubble Space Telescope took this photo of Mars. Some prominent features of the planet are clearly visible: the ancient and inactive shield volcano Syrtis Major (far right and partly covered by clouds); the heavily eroded Arabia Terra in the center of the image; the dark features of Sinus Sabaeous and Sinus Meridiani below center and the small north polar cap (top).

We’re in store for an exciting weekend as the Earth and Mars get closer to each other than at any time in the last ten years. To take advantage of this special opportunity, the Hubble Space Telescope, normally busy eyeing remote galaxies, was pointed at our next door neighbor to capture this lovely close-up image.

Opposition occurs when Mars and Earth line up on the same side of the Sun. The two planets are closest together at that time. Mars opposition occurs on May 22, when the planet will shine at magnitude -2.0 and with an apparent diameter of 18.6 arc seconds, its largest in years. Credit: Bob King
Opposition occurs when Mars and Earth line up on the same side of the Sun. The two planets are closest together around that time. Mars opposition occurs on May 22, when the planet will shine at magnitude -2.0 and with an apparent diameter of 18.6 arc seconds, its largest in over 10 years. Credit: Bob King

As Universe Today writer David Dickinson described in his excellent Mars guide, the planet reaches opposition on Sunday morning May 22. That’s when the planet will be directly opposite the Sun in the sky and rise in the east around the same time the Sun sets in the west. Earth sits squarely in between. Opposition also marks the planet’s close approach to Earth, so that Mars appears bigger and brighter in the sky than usual. A perfect time for detailed studies whether through both amateur and professional telescopes.

Although opposition for most outer planets coincides with the date of closest approach, that’s not true in the case of Mars. If Mars is moving away from the Sun in its orbit when Earth laps it, closest approach occurs a few days before opposition.  But if the planet is moving toward the Sun when our planet passes by, closest approach occurs a few days after opposition. This time around, Mars is headed sunward, so the date of closest approach of the two planets occurs on May 30.

It’s all goes back to Mars’ more eccentric orbit, which causes even a few days worth of its orbital travels to make a difference in the distance between the two planets when Earth is nearby.  On May 22, Mars will be 47.4 million miles away vs. 46.77 million on the 30th, a difference of about 700,000 miles.

asdf
Every 26 months Mars reaches opposition. This mosaic of photos taken by Hubble show seven different oppositions since 1995. Because of Mars’ elliptical orbit, it shows variations in apparent size from opposition to opposition.  Mars was the closest in 2003 when it came within 34.8 million miles (56 million kilometer) of Earth. The part of Mars that is tilted towards the Earth also shifts over time, resulting in the changing visibility of the polar caps. Clouds and dust storms, as well as the size of the ice caps, can change the appearance of Mars on time scales of days, weeks, and months. Other features of Mars, such as some of the large dark markings, have remained unchanged for centuries. Credit: NASA/ESA

On May 12, Hubble took advantage of this favorable alignment and turned its gaze towards Mars to take an image of our rusty-hued neighbor, From this distance the telescope could see Martian features as small as 18.6 miles (30 kilometers) across. The image shows a sharp, natural-color view of Mars and reveals several prominent geological features, from smaller mountains and erosion channels to immense canyons and volcanoes.

This image shows our neighbouring planet Mars, as it was observed shortly before opposition in 2016 by the NASA/ESA Hubble Space Telescope. Some prominent features on the surface of the planet have been annotated.
Some of the more prominent features in the Hubble photo of Mars are marked here. Limb hazes are visible in modest-sized telescopes as a pale edging around the planet’s rim. The planet’s distinctive red color is created by rust. Billions of years ago, it’s thought that ultraviolet light from the Sun split water in the Martian atmosphere into hydrogen and oxygen. The hydrogen escaped, but the oxygen combined with iron in the planet’s surface rocks to form iron oxide or rust. Many of Earth’s red rock formations are similarly “oxidized.” Credit: NASA/ESA

The orange area in the center of the image is Arabia Terra, a vast upland region. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest features on the planet.

While the polar caps aren't currently visible, telescope users will be treated to nice views of India-shaped Syrtis Major. The large crater Hellas at the top (south) limb is currently covered in winter clouds. Credit: Christopher Go
While the polar caps aren’t currently visible, telescope users will be treated to nice views of India-shaped Syrtis Major. The large crater Hellas at the top (south) limb is currently covered in winter clouds. Credit: Christopher Go

South of Arabia Terra, running east to west along the equator, is the long dark feature named Sinus Sabaeus that terminates in a larger, dark blob called and Sinus Meridiani. These darker regions are covered by bedrock from ancient lava flows and other volcanic features. An extended blanket of clouds can be seen over the southern polar cap where it’s late winter. The icy northern polar cap has receded to a comparatively small size because it’s now late summer in the northern hemisphere.

Mars on May 2 shows Syrtis Major off to the east (right). Crossing the top of the photo are Mare Tyrrhenum to the right of the planet's central meridian and Mare Cimmerium, to the left. Credit: Christopher Go
Mars on May 2 shows Syrtis Major off to the east (right). Crossing the top of the photo are Mare Tyrrhenum to the right of the planet’s central meridian and Mare Cimmerium, to the left. Credit: Christopher Go

So the question now is how much will you see as we pull up alongside the Red Planet this weekend? With the naked eye, Mars looks like a fiery “star” in the head of Scorpius the scorpion not far from the similarly-colored Antares, the brightest star in the constellation. It’s unmistakable. Even through the haze it caught my eye last night, rising in the southeast around 10 o’clock with its signature hue.

Through a 4-inch or larger telescope, you can see limb hazes/clouds and prominent dark features such as Syrtis Major, Utopia, clouds over Hellas, Mare Tyrrhenum (to the west of Syrtis Major) and Mare Cimmerium (west of M. Tyrrhenum).

Expert imager Damian Peach created this photographic map of Mars labeled with its most prominent features visible in amateur telescopes. Click for a larger version. Credit: Damian Peach
Expert astroimager Damian Peach created this photographic map of Mars labeled with its most prominent features visible in amateur telescopes. Click for a large version. Credit: Damian Peach

These features observers across the America will see this week and early next between about 11 p.m. and 2 a.m. local time. As Mars rotation period is 37 minutes longer than Earth’s, these markings will gradually rotate out of view, and we’ll see the opposite hemisphere in the coming weeks. You can use the map to help you identify particular features or Sky & Telescope’s handy Mars Profiler to know which side of the planet’s visible when.

The Full Moon, Mars only hours before opposition, Saturn and Antares gather in the southern sky for a special, diamond-shaped grouping. Diagram: Bob King, source: Stellarium
The Full Moon, Mars only hours before opposition, Saturn and Antares gather in the southern sky for a special, diamond-shaped grouping. Diagram: Bob King, source: Stellarium

To top off all the good stuff happening with Mars, the Full Flower Moon will join up with that planet, Saturn and Antares Saturday night May 21 to create what I like to call a “diamond of celestial lights” visible all night. Don’t miss it!

Italian astronomer Gianluca Masi will offer up two online Mars observing sessions in the coming week, on May 22 and 30, starting at 5 p.m. CDT (22:00 UT). Yet another opportunity to get acquainted with your inner Mars.

Till Hellas Freezes Over – See Frost and Clouds in Mars’ Largest Crater

Earth’s changing weather always makes life interesting. Seeing weather on other planets through a telescope we sense a kinship between our own volatile world and the fluttering image in the eyepiece. With the  April 8 opposition of Mars rapidly approaching, you won’t want to miss a striking meteorological happening right now on the Red Planet. 

Map showing the most prominent dark features on Mars. Hellas is at upper right. To its north is the Africa-shaped windswept volcanic plain Syrtis Major. Credit: A.L.P.O.
Map showing the most prominent dark features on Mars. Hellas is at upper right. Credit: A.L.P.O.

Winter’s already well underway in the planet’s southern hemisphere and there’s no better place to see it than over Hellas, Mars’ biggest impact crater. Hellas formed some 4 billion years when a small asteroid crashed into the young planet and left a scar measuring 1,400 miles (2,300 km) wide and 26,465 feet (7,152 meters) deep. Point your telescope in its direction in the next few weeks and you’ll see what looks at first like the planet’s south polar cap. Don’t be deceived. That’s Hellas coated in dry ice frost and filled with wintertime clouds.

The Hellas impact basin, also known as Hellas Planitia. After Mars' Utopia Planitia and the moon's South Pole-Aitken Basin, Hellas is the third largest confirmed crater in the solar system.
The Hellas impact basin, also known as Hellas Planitia, is 1,400 miles wide. After Mars’ Utopia Planitia and the moon’s South Pole-Aitken Basin, Hellas is the third largest confirmed crater in the solar system.

Right now, Mars’ northern hemisphere, along with the north polar cap, are tipped our way. Though the cap is rapidly vaporizing as the northern summer progresses,  you can still spot it this month as a small dab of white along the northern limb in 6-inch (15 cm) and larger telescopes. Use a magnification upwards of 150x for the best views. The south polar cap can’t be seen because it’s tipped beyond the southern limb.

Mars from Athens, Greece on March 14, 2014 with Hellas (top), Syrtis Major and both morning and evening limb water clouds. Credit: Manos Kardasis
Mars from Athens, Greece on March 14, 2014 with Hellas (top), Syrtis Major and both morning and evening limb water clouds. The winter-whitened Hellas impact basin is best seen using magnifications of 150x or higher. Credit: Manos Kardasis

Along with nearby Syrtis Major, Hellas was one of the first features discovered with the telescope. Even in summer its pale floor stands out against the darker volcanic features of the planet. Though windswept and bitter cold now, Hellas’ great depth makes it one of the warmest places on Mars during the summer months. Mid-summer atmospheric pressure has been measured at more than 10 millibars, more than twice the planet’s mean. Afternoon high temperatures reach near the freezing point (32 F / 0 C) with nighttime lows around -50 F (-45 C). Winter temperatures are much more severe with lows around -22o F (-140 C). Carbon dioxide condenses as frost and whitens the floors of many craters during this time.

Mars photographed by the Mars Global Surveyor shows the equally prominent Syrtis Major and the Hellas impact basin. Credit; NASA/JPL/Malin Space Systems
Mars photographed by the Mars Global Surveyor shows the equally prominent Syrtis Major and the Hellas impact basin. Syrtis Major is an ancient, low relief shield volcano. Credit; NASA/JPL/Malin Space Systems

We can only see Hellas when that hemisphere is turned in our direction; this happens for about a week and  a half approximately once a month.  European observers are favored this week with Hellas well placed near the planet’s central meridian from 1 – 4 a.m. local time. Why the outrageous hour? Mars rises around 10 p.m. but typically looks soft and mushy in the telescope until it’s high enough to clear the worst of atmospheric turbulence 2 – 3 hours later. North and South American observers will get their turn starting this Saturday March 22nd around 12:30 – 1 a.m. Good Hellas viewing continues through early April.

Mars at 1 a.m. CDT on successive nights starting March 21, 2014. Notice how planetary features appear to rotate to the east night to night. Created with images from Meridian
Mars at 1 a.m. CDT on successive nights starting March 21, 2014. Notice how planetary features appear to rotate slowly eastward night to night. Created with images from Meridian

Like Earth, Mars revolves from west to east on its axis, but because it rotation period is 37 minutes longer than Earth’s, Hellas and all Martian features appear to drift slowly eastward with each succeeding night. A feature you observed face-on at midnight one night will require staying up until 2:30 a.m. a week later for Mars to “rotate it back” to the same spot. To keep track of the best times to look for Hellas or anything else on Mars, I highly recommend the simple, free utility called Meridian created by Claude Duplessis. Set your time zone and you’ll know exactly the best time to look.

Mars on March 8, 2014 shows not only clouds over Hellas but evening limb clouds. Credit: W.L. Chin
Mars on March 8, 2014 shows clouds over Hellas and evening limb clouds. Credit: Chin Wei Loon

While you’re out watching the Martian winter at work, don’t forget to also look for the shrinking north polar cap and bright, patchy clouds along the planet’s morning (east) and evening limbs. You can use the map above to try and identify the many subtle, gray-toned features named after lands in classic antiquity by 19th century Italian astronomer and Mars aficionado Giovanni Schiaparelli.

I will you success in seeing Hellas and encourage you to share your observations with us here at Universe Today.