What Day 1 On The International Space Station Was Like For The Astronauts

There wasn’t a lot of elbow room when six people from the Endeavour shuttle floated into the baby International Space Station on Dec. 10, 1998, but the cramped quarters resonated with possibility in STS-88 commander Bob Cabana’s mind.

“It’s hard to believe 15 years ago we put those first modules together, and we have this facility today that’s the size of a football field,” said Cabana in an interview today (Nov. 20) with Universe Today.

Cabana, who is now the director of the Kennedy Space Center, oversaw a complex mission that included joining the Russian Zarya and U.S. Unity modules, three spacewalks to get the modules powered and ready for humans to enter, and the pressure of public relations activities surrounding the opening of the station itself.

“That was a very special day, when we went into Unity and Zarya for the first time. There was a lot of excitement and anticipation,” Cabana said. He and Russian Sergei Krikalev — who would go on to become the person who spent the most time in space, at 803 days — entered the tiny hatches side by side to emphasize the international participation.

As is typical of spaceflight, the astronauts spent most of their day at work, busily waking up the station and testing its systems. NASA astronauts Jerry Ross and James Newman put together a communications system. Other crew members tested the videoconference equipment — important for press conferences as well as talking to scientists on the ground. Equipment and supplies in Zarya had to be unstowed and organized.

There also was the first repair on station, when Krikalev and NASA astronaut Nancy Currie replaced a faulty unit in Zarya  “which controlled the discharging of stored energy from one of the module’s six batteries,” NASA wrote in an update at the time.

Cabana wanted his crew to get eight hours of sleep, but the excitement of that first day kept everybody up until 2:30 in the morning despite the wakeup call coming at 7 a.m.

A space station is born. The Russian Zarya module (top) is connected to the U.S. Unity module using the Canadarm on Dec. 6, 1998. Shot is a still from an IMAX camera carried on board shuttle Endeavour. Credit: NASA
A space station is born. The Russian Zarya module (top) is connected to the U.S. Unity module using the Canadarm on Dec. 6, 1998. Shot is a still from an IMAX camera carried on board shuttle Endeavour. Credit: NASA

“We were talking  about what the ISS means, what will be accomplished with this cornerstone,” Cabana recalled, and said he is pleased with what has come to pass in the next 15 years. “It had come true. Everything we thought that could be has come together. That was a very special night, thinking about the future and how important the International Space Station was.”

The heaviest construction finished in 2011, and larger crews of six were allowed on board rather than the beginning crews of just three. NASA is now trying to position the station as a venue for microgravity science to justify the expense of running it. The astronauts, however, must balance their time doing science with the normal chores and maintenance the station requires. (The recent Expedition 35/36 missions were extremely productive in terms of science return, NASA astronaut Chris Cassidy told Universe Today in a past interview.)

All buildings on Earth require upgrades from time to time to stay safe and up to date, and the ISS is no different. Cabana said analysis will be done to “extend the life on some of the modules, but we don’t see that as a large issue.” The reason? The crews do “an outstanding job” keeping the station humming along with routine maintenance, he said.

Today (Nov. 20) marks the 15th anniversary of Zarya’s launch into orbit. The station partners are currently committed until 2020, meaning negotiations are forthcoming to see what to do with the station in the years afterwards. It’s unclear what will happen next — the recession is still reverberating in the United States and overseas — but today, the agencies focused on the successes.

Each partner agency tweeted facts and science concerning the ISS under the hashtag #ISS15, and invited people using all forms of social media to share their thoughts on the station. What are some notable things about the station, and what is a good use of it in the future, in your opinion? Let us know in the comments.

NASA astronaut Bob Cabana (left) and Russian cosmonaut Sergei Krikalev just outside the hatch to the Zarya Russian module  on Dec. 10, 1998. Credit: NASA
NASA astronaut Bob Cabana (left) and Russian cosmonaut Sergei Krikalev just outside the hatch to the Zarya Russian module on Dec. 10, 1998. Credit: NASA

Teenaged Space Station Thriving After 15 Years Of Science, Extreme Construction And Tricky Repairs

Extreme conditions surround the International Space Station’s scientific work, to say the least. It takes a rocketship to get there. Construction required more than 1,000 hours of people using spacesuits. Astronauts must balance their scientific work with the need to repair stuff when it breaks (like an ammonia coolant leak this past spring.)

But amid these conditions, despite what could have been show-stoppers to construction such as the Columbia shuttle tragedy of 2003, and in the face of changing political priorities and funding from the many nations building the station, there the ISS orbits. Fully built, although more is being added every year. The first module (Zarya) launched into space 15 years ago tomorrow. Humans have been on board continuously since November 2000, an incredible 13 years.

The bulk of construction wrapped up in 2011, but the station is still growing and changing and producing science for the researchers sending experiments up there. Below are some of the milestones of construction in the past couple of decades. Did we miss something important? Let us know in the comments.

It's a baby space station! The Russian Zarya module (left) and U.S. Unity module after they were joined on Dec. 4, 1998. Photograph taken by the STS-88 crew aboard space shuttle Endeavour. Credit: NASA
It’s a baby space station! The Russian Zarya module (left) and U.S. Unity module after they were joined on Dec. 4, 1998. Photograph taken by the STS-88 crew aboard space shuttle Endeavour. Credit: NASA
The space station with newly installed U.S. solar arrays (top) in December 2000. Picture taken by the departing STS-97 crew aboard space shuttle Endeavour. Credit: NASA
The space station with newly installed U.S. solar arrays (top) in December 2000. Picture taken by the departing STS-97 crew aboard space shuttle Endeavour. Credit: NASA
The Expedition 1 crew, which docked with the space station on Nov. 2, 2000. From left, NASA's Bill Shepherd, and Roscosmos' Yuri Gidzenko and Sergei Krikalev. Humans have lived continuously in orbit since that day, more than 13 years ago. Credit: NASA
The Expedition 1 crew, which docked with the space station on Nov. 2, 2000. From left, NASA’s Bill Shepherd, and Roscosmos’ Yuri Gidzenko and Sergei Krikalev. Humans have lived continuously in orbit since that day, more than 13 years ago. Credit: NASA
STS-114 NASA astronaut Steve Robinson in 2005 aboard Canadarm2, a robotic arm designed specifically for International Space Station construction. Canadarm2 was installed during STS-100 in 2001. It took more than 1,000 hours of spacewalking assembly to put the station together. Credit: NASA
STS-114 NASA astronaut Steve Robinson in 2005 aboard Canadarm2, a robotic arm designed specifically for International Space Station construction. Canadarm2 was installed during STS-100 in 2001. It took more than 1,000 hours of spacewalking assembly to put the station together. Credit: NASA
With NASA Expedition 2 astronaut Susan Helms controlling Canadarm2, the Quest airlock is brought over for installation on Unity Node 1 aboard the International Space Station. Today, Quest is the usual departure point for U.S. spacewalks. Credit: NASA
With NASA Expedition 2 astronaut Susan Helms controlling Canadarm2, the Quest airlock is brought over for installation on Unity Node 1 aboard the International Space Station. Today, Quest is the usual departure point for U.S. spacewalks. Credit: NASA
November 3, 2007 – Canadarm2 played a big role in helping astronauts fix a torn solar array.  The arm’s reach was extended by the Orbiter Boom Sensor System, and here, allowing astronaut Scott Parazynski analyses the solar panel while anchored to the boom. Credit: NASA
From time to time, astronauts are called upon to perform tricky repairs to the International Space Station. This October 2007 spacewalk by NASA astronaut Scott Parazynski during shuttle mission STS-120 repaired tears to one of the station’s solar panels — while the panel was powered. Spacewalks have also addressed ammonia leaks, among other things. Credit: NASA
European Space Agency astronaut Hans Schlegel works on installing the ESA Columbus laboratory in 2008. The ten racks on board Columbus can be worked on by astronauts or controlled remotely from a center in Germany. NASA is trying to position the station as an orbiting laboratory that can perform experiments that are impossible on Earth, but astronauts must balance science work with maintenance tasks aboard the station. Credit: NASA
European Space Agency astronaut Hans Schlegel works on installing the ESA Columbus laboratory in 2008. The ten racks on board Columbus can be worked on by astronauts or controlled remotely from a center in Germany. NASA is trying to position the station as an orbiting laboratory that can perform experiments that are impossible on Earth, but astronauts must balance science work with maintenance tasks aboard the station. Credit: NASA
Astronaut Tracy Caldwell Dyson reflects on the view from the ISS's Cupola. Credit: Doug Wheelock/NASA
Astronaut Tracy Caldwell Dyson (Expedition 23/24) reflects on the view from the ISS’s Cupola in 2010. This panoramic window to Earth was a late addition to the station, in February 2010. Credit: Doug Wheelock/NASA
Space station construction is still ongoing. In 2015, the Bigelow Expandable Activity Module (BEAM) will be attached to the station as a sort of inflatable room. The test will examine the viability of inflatable structures in space. Pictured in front are NASA Deputy Administrator Lori Garver and Robert T. Bigelow, president and founder of Bigelow Aerospace in 2013. NASA/Bill Ingalls
Space station construction is still ongoing. In 2015, the Bigelow Expandable Activity Module (BEAM) will be attached to the station as a sort of inflatable room. The test will examine the viability of inflatable structures in space. Pictured in front are NASA Deputy Administrator Lori Garver and Robert T. Bigelow, president and founder of Bigelow Aerospace in 2013. NASA/Bill Ingalls