Giant Water Bubble Engulfs Video Camera On Space Station, With Hilarious Results

What does the view look like from inside a water bubble? Earlier this year, astronauts on the International Space Station completely submersed a GoPro video recorder inside liquid and filmed the view — which is quite amusing.

Look below for some distorted views of then-Expedition 40 astronauts Reid Wiseman and Alexander Gerst … and an awesome 3-D video besides!

NASA’s goal in tasking the astronauts with this is to better understand how water behaves in space. (It’s actually quite a serious matter, as a lack of understanding of the physics was one factor leading to a dangerous water leak during a spacewalk in 2013.) In this case, the astronauts were looking at how surface tension works in microgravity.

As for that 3-D video, the agency says it is going to offer more of these from space as it gets people even closer to actually being there. Here’s a neat phenomenon: typically the higher radiation levels in space damage video cameras to the extent where they need to be replaced every 8-12 months.

A 3-D camera sent up in 2011, however, had virtually no dead pixels in the images, prompting NASA to investigate. Officials requested the camera come back to Earth on a Dragon splashdown in 2012. That’s when they discovered the way the 3-D camera is structured — with stereo images layered on top of each other — lessens the appearance of any damage.

But there’s also less damage in the first place, NASA said, because the 3-D camera doesn’t use charge-coupled imaging sensors that are susceptible to radiation. The newer system uses a metal-oxide semiconductor sensor, which doesn’t get hurt as badly. We guess that’s more argument for bringing 3-D images from the final frontier.

Source: NASA

Expedition 40 commander Steve Swanson (left) and Reid Wiseman view a water bubble surrounding a video camera on the International Space Station in summer 2014. Credit: NASA/YouTube (screenshot)
Expedition 40 commander Steve Swanson (left) and Reid Wiseman view a water bubble surrounding a video camera on the International Space Station in summer 2014. Credit: NASA/YouTube (screenshot)

Astronaut Snaps Amazing Picture Of His Crewmates Returning To Earth

Wow! See that bright streak in the photo above? That’s a shot of the Expedition 40 crew making a flawless return from the International Space Station yesterday (Sept. 10) … a shot taken from space itself.

“Our view of the picture perfect reentry of TMA-12M,” wrote Expedition 41 astronaut Reid Wiseman, who just hours before bid farewell to Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). The re-entry was in fact so perfect that TV cameras caught the parachute immediately after deployment, which doesn’t always happen.

As you can see in the video replay below, the Soyuz made a bulls-eye landing near Dzhezkazgan, Kazakhstan at 10:23 p.m. EDT (2:23 a.m. UTC). There are now only three people tending to the space station until the rest of the Expedition 41 crew launches, which is expected to happen Sept. 25.

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Antares Commercial Rocket Cleared for July 11 Space Station Blastoff Following Engine Re-Inspection

NASA WALLOPS FLIGHT FACILITY, VA – The long delayed liftoff of an Orbital Sciences Corp. commercial Antares rocket on a cargo mission bound for the International Space Station (ISS) has been cleared for blastoff this Friday, July 11, from the Eastern shore of Virginia, following a thorough re-inspection of the two Russian built and US modified AJ26 engines that power the rocket’s first stage after the test failure of a different engine in May.

The critically important Aerojet Rocketdyne AJ26 engine re-inspection was mandated following the significant failure of another AJ26 engine during acceptance testing on May 22 at NASA’s Stennis Space Center in Mississippi to investigate any concerns and insure against an in flight failure.

NASA and Orbital Sciences are now targeting the Antares launch carrying the privately developed Cygnus resupply freighter on the Orb-2 mission from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility, Virginia, on July 11 at 1:40 p.m. (EDT).

Universe Today was granted a visit to the Orbital Sciences Antares rocket integration facility at NASA Wallops recently as the engine re-inspection work was winding down. See my Antares/Cygnus Orb-2 rocket photos herein.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Aerojet engineers re-inspected the engines while they were still mated to the bottom of the Antares rocket and found them to be satisfactory for fight. No swap out was required.

The Cygnus cargo logistics spacecraft was then mated to the rocket on July 3 and will be rolled out to the Wallops launch pad on Wednesday morning at 8:30 a.m., July 9.

Late stow items including time sensitive science experiments will be packed aboard on Tuesday, July 8.

The launch window on July 11 opens at 1:40 p.m. for a duration of 5 minutes.

NASA will broadcast the Antares launch live on NASA TV – http://www.nasa.gov/nasatv

In the event of a delay for any reason the next available launch opportunity is July 12 at 1:14 p.m.

Until the first stage engine failure, this Antares rocket had been slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 mission which is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The AJ26 rocket engine that failed in May was extensively damaged about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.

“There was a test failure at Stennis on May 22,” Orbital Sciences spokesman Barry Beneski told Universe Today at that time. “Engineers are examining data to determine the cause of the failure.”

The failure occurred approximately 30 seconds into the planned 54-second test.

“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement in May.

The pressurized Cygnus spacecraft will deliver 1,657 kg of cargo to the ISS including science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus will remain berthed at the station for 40 days.

For the return to Earth it will be loaded with approximately 1,346 kg of material for disposal upon atmospheric reentry.

The two stage Antares rocket stands 133 feet tall.

It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Flight time to the ISS is approximately 3 days. An on time launch will result in Cygnus arrival at the ISS on July 15.

Station commander Steven Swanson of NASA and Flight Engineer Alexander Gerst of the European Space Agency (ESA) will grapple and berth Cygnus using the stations 57 foot-long robotic arm onto the Earth-facing port of the station’s Harmony module.

The Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.

To date the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia starting in April 2013.

They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).

The AJ26 engines were originally known as the NK-33 and built during the 1960s and 1970s in the Soviet Union for their manned moon landing program.

Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Dnipropetrovsk, Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA
Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA

Astronauts Shave Their Heads Bald After U.S. Loses FIFA Match To Germany

Lose a soccer game and lose your hair. That’s apparently the deal that American astronauts made on the International Space Station last week, as commander Steve Swanson and Reid Wiseman both were shaved bald after the U.S. lost to Germany 1-0 June 26 in the FIFA World Cup. Gleefully wielding the shaver was Alexander Gerst, who happens to be from Germany.

Despite their busy science schedule, the astronauts have been enthusiastically following (and tweeting about!) the games. Not to mention they did a couple of improvised soccer matches in zero gravity, complete with awesome celebratory dances. You can check out all the video action below.

Watch Live As Three People Return From Space Today

It’s time to come home! Expedition 39 astronauts Rick Mastracchio, Koichi Wakata and Mikhail Tyurin will climb into a Russian Soyuz spacecraft later today to make the trip back to Earth from the International Space Station. Much of the activity will play out on NASA TV, which you can watch above. Below are details about when to watch.

These are the descriptions from NASA about when the major events of the day occur. Bear in mind that all of these times are subject to change as circumstances warrant.

3 p.m. EDT / 7 p.m. UTC — Farewells and hatch closure (hatch closure scheduled at 3:15 p.m. / 7:15 p.m. UTC )
6:15 p.m. EDT / 10:15 p.m. UTC — Undocking (undocking scheduled at 6:33 p.m. / 10:33 p.m. UTC)
8:45 p.m. EDT / 12:45 a.m. UTC — Deorbit burn and landing (deorbit burn scheduled at 9:03 p.m. EDT /1:03 a.m. UTC landing scheduled at 9:57 p.m. EDT / 1:57 a.m. UTC)

The crew is expected to land near Dzhezkazgan in Kazakhstan. After doing some quick medical checks on site, the crew will be flown out separately to do more detailed testing at their local medical centers.

With Wakata flying home, the station is now under the command of Expedition 40 NASA astronaut Steve Swanson, who will oversee activities there along with Alexander Skvortsov and Oleg Artemyev. The rest of the Expedition 40 crew should fly to station May 28, if all goes to plan.

UPDATE: Spacewalkers Zip Through Tasks To Fix Broken Computer

UPDATE, 11:42 a.m. EDT: Rick Mastracchio and Steve Swanson finished their spacewalk in just 1 hour and 36 minutes, nearly an hour faster than what NASA budgeted for. Early tests show the replacement computer is working well, providing backup once again for the robotics, solar arrays and other systems on station.

Can two astronauts fix a broken computer quickly on the International Space Station, preventing possible problems with the solar arrays and robotics? Watch live (above) to find out.

The NASA spacewalk involving Rick Mastracchio and Steve Swanson is scheduled to start today (April 23) at 9:20 a.m. EDT (1:20 p.m. UTC), with coverage starting around 8:30 a.m. EDT (12:30 p.m. UTC). The spacewalk is scheduled to last 2.5 hours. Bear in mind that the times could change as circumstances arise.

The computer, also called a multiplexer/demultiplexer (MDM), failed for unknown reasons a couple of weeks ago. While the primary computer is working perfectly and the crew is in no danger, things get more risky if the primary computer also breaks. That’s why NASA worked to get the spacewalkers outside as quickly as possible. You can see a full briefing of the rationale here.

As a note, all non-urgent spacewalks have been suspended because NASA is still working on addressing the recommendations given after a life-threatening water leak took place in a NASA spacesuit last summer. Urgent spacewalks can still go ahead because the agency has implemented safety measures such as snorkels and helmet absorption pads in case of another leak.

That said, in the months since NASA has traced the problem to contamination in a filter in the fan pump separator. After replacing the separator, the leaky spacesuit was used during two contingency spacewalks in December with no water problems at all.

Urgent Spacewalk Must Dance Between Dragon and Progress Spacecraft

It’s a good thing that next week’s urgent spacewalk is pegged as a short one, because the coming days will be hectic for the Expedition 39 crew.

Finding a spot for even a 2.5-hour excursion on the International Space Station was extremely challenging, NASA officials said in a news conference today (April 18), because crew time also is needed for two cargo spacecraft: the SpaceX Dragon launch scheduled for today and subsequent Progress undocking/redocking on station.

Here’s a rundown of some things NASA was juggling as it moves hastily to replace a failed backup computer on the outside of the station. Rick Mastracchio and Steve Swanson are expected to go “outside” on Wednesday (April 23), but if today’s SpaceX launch is delayed the spacewalk will be moved up to Sunday (April 20).

Why it’s urgent

The U.S. portion of the station has 46 computers, with 24 of them external. The multiplexer/demultiplexer or MDM (one of two) controls 12 of these external computers and is responsible for everything for how the solar arrays are pointed to how some robotics operate. It should be noted here that the primary MDM is working just fine, but if it fails with no backup, there will be problems. NASA will lose telemetry or data from the external ammonia cooling systems operating on station (although the systems themselves will work automatically). Some redundant equipment can’t be turned on, either. The agency also won’t be able to point the solar arrays to get power or to move them aside when spacecraft come in, to protect the arrays from thruster plumes (although further below you can see some backups they have for the array problems.)

NASA astronaut Mike Hopkins during a contingency spacewalk in December 2013 to replace a faulty ammonia pump. Hopkins was part of Expedition 37/38. Credit: NASA
NASA astronaut Mike Hopkins during a contingency spacewalk in December 2013 to replace a faulty ammonia pump. Hopkins was part of Expedition 37/38. Credit: NASA

Fixing the spacesuits

Since last summer’s life-threatening water leak, NASA has been moving quickly to fix the spacesuits it has. All non-urgent spacewalks are off the table until at least this summer while NASA addresses a panel’s recommendations to fix the problem. A faulty fan pump separator was swapped out on the bad suit (Suit 3011) last December, but two spacesuits still needed to be fixed on station. The crew spent much of the past week changing out a fan pump separator on Suit 3005 (which will also be used in the spacewalk) and flushing out the cooling lines in the suit and on station, since contamination is believed to have led to the failure. (More parts will arrive on Dragon, but they won’t be used this time, NASA has determined.)

Spacewalk preps on the ground

Also today, NASA astronaut Chris Cassidy was in “the pool” (at NASA’s Neutral Buoyancy Laboratory) simulating the spacewalk. He’s part of a team working to see what could go wrong on the spacewalk and come up with procedures dealing with that. “As best we can we have all those answers in our hip pockets so as they get thrown out on the game day, we can give the crew a quick answer,” he said in an interview Wednesday (April 16) on NASA TV.

Preparing the new computer

A spare MDM is inside the station, but it was an older model that needed to be reconfigured. Astronauts changed out a processing card and did other hardware/software changes to prepare the MDM to sit outside of the station. They also thoroughly tested it to make sure it’s working before mounting it outside. As a point of interest, no one yet knows why the backup MDM failed, but astronauts will inspect the site for damage (and take pictures). It’s expected that once they bring the broken MDM inside, any failed cards will be swapped out and sent to the ground sometime for analysis. The MDM itself will stay on station to be used again, as needs arise.

SpaceX's Dragon spacecraft berthed to the International Space Station during Expedition 33 in October 2012. Credit: NASA
SpaceX’s Dragon spacecraft berthed to the International Space Station during Expedition 33 in October 2012. Credit: NASA

Grappling Dragon

SpaceX’s Dragon is a cargo spacecraft controlled by the ground, but the astronauts need to be ready to nab it with the robotic Canadarm2 once it arrives (now scheduled for Sunday, April 20). The crew has their normal amount of training and preparation for the procedures, then the time it takes to capture the spacecraft, and then the time to unload the vehicle (which is somewhat urgent as there are certain research experiments that need to come off fairly quickly, NASA said.)

Moving the solar array

NASA not only needs to have the solar arrays out of the way from thruster plumes from Dragon and Progress, but it also needs to keep power to the station and configure the arrays so that if the other MDM fails, the arrays will automatically be placed in a safe spot. The array would autotrack for 24 hours after the MDM fails, then go to a “preset angle” that NASA carefully chose. As for whether there would be power shortages on station, NASA says it depends on the sun’s angle and what needs to be done on station at a particular time.

Moving the Progress spacecraft

Russian cargo ship Progress 53 is supposed to undock from the Zvezda service module on Wednesday (April 23) to test an automated rendezvous system that controls approaches to station. Then it’s docking again on Friday (April 25).

Unless otherwise noted, information in this article is based on comments from the following officials in today’s NASA news conference: Mike Suffredini, International Space Station program manager; Brian Smith, International Space Station flight director and Glenda Brown, lead spacewalk officer.

Shiny: Astronaut Wears ‘Firefly’ T-Shirt In First Instagram From Space

And now, time for some thrilling heroics. NASA astronaut Steve Swanson sent out the first Instagram from space last week wearing none other than a Firefly T-shirt. There’s something to be said about a space-faring guy evoking images of Captain Mal doing the impossible in the plucky Serenity spaceship, isn’t there?

We’re happy the epicness did not break NASA’s Instagram feed, as Swanson has been sending out pictures regularly since then showing the view from orbit (he joked about wanting a vacation at one point) as well as another selfie. You can check out the magic below, and follow the rest on NASA’s Instagram feed. We’ve copied and pasted Swanson’s captions below each image.

During Swanson’s first mission to space in 2007, STS-117, he brought with him the DVD set of Firefly and its movie spinoff, Serenity, and left it on the International Space Station library, according to collectSPACE.

Oh, and social media from space is also being covered on Twitter, via Expedition 39 NASA astronaut Rick Mastracchio and Koichi Wakata, from the Japan Aerospace Exploration Agency.

“The Turks and Caicos islands – I think I need to go there after this mission.” – Swanny #exp39 #earth #iss #international #space #station #nasa #vacation #earthrightnow

“Blood, sweat, but hopefully no tears.” – Swanny #nasa #iss #exp39 #international #space #station #blood #sweat #tears #medical

“Cape Canaveral – looking forward to when the US launches out of here again.” – Swanny #iss #exp39 #earth #florida #capecanaveral #international #space #station #launch #atlantic #coast #nasa

“The Maldive Islands” – Swanny #exp39 #iss #international #space #station #earth #earthrightnow #maldives #island

“The Northern Lights, while over Europe.” – Swanny #exp39  #nasa  #iss  #international  #space  #station #earth  #europe  #night  #aurora

Event Alert: Watch Space Station Hatch Opening Live Tonight

Update, 8:33 p.m. EDT: The Soyuz spacecraft arrived safely at station at 7:53 p.m. EDT (11:53 a.m. UTC) and coverage of the hatch opening is scheduled at 10:15 p.m. EDT (2:15 a.m. UTC).

After spending an extra couple of days in the cramped Russian Soyuz spacecraft, the incoming International Space Station crew will likely be very be glad to get out and stretch their legs. You can check out the festivities live in the video link above.

Three people are set to make a docking with the orbiting complex at 7:58 p.m. EDT (11:58 p.m. UTC). If all goes to schedule, they’ll pop the hatch open at 10:40 p.m. EDT (2:40 a.m. UTC). Meanwhile, engineers are trying to figure out what caused the malfunction that prevented a docking as planned on Tuesday (March 25).

Remember that all schedules are subject to change, so tune into NASA TV well before each event happens.

The Expedition 39/40 crew lifted off Tuesday afternoon (EDT) from Kazakhstan to take a fast track to the space station that should have seen them dock on launch day. The Soyuz has to make three engine firings or burns to accomplish this. The docking was cancelled after the third burn did not happen as planned. The Russian Federal Space Agency (Roscosmos) has determined this was because the spacecraft was in the wrong orientation, but the underlying cause is still being investigated.

Once this happened, the crew switched to a standard backup procedure to bring them to the station in two days instead. (This path, in fact, was what all crews did up until last year.) The crew is safe and in good spirits heading up to the docking, NASA has said. The Soyuz has done several other engine firings since, with no incident.

The Soyuz crew includes Steve Swanson (NASA), Alexander Skvortsov (Roscosmos) and Oleg Artemyev (Roscosmos). Awaiting them on the station are Koichi Wakata (Japan Aerospace Exploration Agency),  Rick Mastracchio (NASA) and Mikhail Tyurin (Roscosmos). Wakata is in command of the station, marking a first for Japan’s astronaut corps.