Yet Another X-Class Flare From AR 1748

Last night, as Commander Hadfield and the Expedition 35 crew were returning to Earth in their Soyuz spacecraft, the Sun unleashed yet another X-class flare from active region 1748, the third and most powerful eruption yet from the sunspot region in the past 24 hours — in fact, at a level of X3.2, it was the most intense flare observed all year.

And with this dynamic sunspot region just now coming around the Sun’s limb and into view, we can likely expect much more of this sort of activity… along with a steadily increasing chance of an Earth-directed CME.

According to SpaceWeather.com AR1748 has produced “the strongest flares of the year so far, and they signal a significant increase in solar activity. NOAA forecasters estimate a 40% chance of more X-flares during the next 24 hours.”

(Find out more about the classification of solar flares here.)

The sunspot region just became fully visible to Earth during the early hours of May 13 (UT).

Most recent SDO image of AR1748 (NASA/SDO/AIA)
Most recent SDO image of AR1748 (NASA/SDO/AIA)

Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.

Sunspots may appear dark because they are relatively cooler than the surrounding area on the Sun’s photosphere, but in ultraviolet and x-ray wavelengths they are brilliantly white-hot. And although sunspots look small compared to the Sun, they are often many times larger than Earth.

Read more: How Big Are Sunspots?

According to SDO project scientists Dean Pesnell on the SDO is Go! blog, AR1748 is not only rapidly unleashing flares but also changing shape.

“The movies show that the sunspot is changing, the two small groups on the right merging and the elongated spot on the lower left expanding out to join them,” Pesnell wrote earlier today.

Of course, as a solar scientist Pesnell is likely much more excited about the chance to observe further high-intensity activity than he is concerned about any dramatically negative impacts of a solar storm here on Earth, which, although possible, are still statistically unlikely.

“Great times ahead for this active region!” he added enthusiastically.

For updated information on AR1748’s activity visit SpaceWeather.com and NASA’s SDO site, and also check out TheSunToday.org run by solar physicist C. Alex Young, Ph.D.

Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.

 

The Sun Doesn’t Cause Earthquakes

If that title seems like an obvious statement to you, it’s ok… it seems pretty obvious to me too. But there are those who have been suggesting — for quite some time, actually — that earthquakes can be triggered or strengthened by solar activity; that, in fact, exceptionally powerful solar flares, coronal mass ejections, and other outpourings from our home star can cause the planet’s crust to shift, shake, and shudder.

Except that that’s simply not true — at least, not according to a recent study by researchers from the USGS.

Researchers Dr. Jeffrey Love from the United States Geological Survey and Dr. Jeremy Thomas from Northwest Research Associates compared historical data of solar activity with earthquake occurrences around the world and found no definitive correlations… nothing to suggest that one directly influenced the other.

“Recently there’s been a lot of interest in this subject from the popular press, probably because of a couple of larger and very devastating earthquakes. This motivated us to investigate for ourselves whether or not it was true.”

– Jeffrey Love, USGS Research Geophysicist

Even when an earthquake may have been found to occur on the same day as increased solar activity, at other times during even stronger quakes the Sun may have been relatively quiet, and vice versa.

Damage in Anchorage from an earthquake on March 27, 1964. Solar activity at the time was unexceptional. (U.S. Army photo)
Damage in Anchorage from an earthquake on March 27, 1964. Solar activity at the time was unexceptional. (U.S. Army photo)

“There have been some earthquakes like the 9.5 magnitude Chile quake in 1960 where, sure enough, there were more sunspots and more geomagnetic activity than on average,” said Dr. Love. “But then for the Alaska earthquake in 1964 everything was lower than normal. There’s no obvious pattern between solar activity and seismicity, so our results were inconclusive.”

Basically, even though our planet orbits within the Sun’s outer atmosphere and we are subject to the space weather it creates — and there’s still a lot to be learned about that — observations do not indicate any connection between sunspots, flares, and CMEs and the shifting of our planet’s crust (regardless of what some may like to suggest.)

“It’s natural for scientists to want to see relationships between things,” said Love. “Of course, that doesn’t mean that a relationship actually exists!”

The team’s findings were published in the March 16, 2013 online edition of Geophysical Research Letters.

Read more in Harriet Jarlett’s article on Planet Earth Online, and for results from another study see Dr. Ryan O’Milligan’s article on TheSunToday.org.

(Oh, and the Moon doesn’t cause earthquakes either.)

AR1654 is a Monster Sunspot. (And It’s Aiming Our Way.)

Active Region 1654 on the Sun’s western limb, seen by SDO on Jan. 11 (NASA/SDO/HMI team. Diagram by J. Major.)

Like an enormous cannon that is slowly turning its barrel toward us, the latest giant sunspot region AR1654 is steadily moving into position to face Earth, loaded with plenty of magnetic energy to create M-class flares — moderate-sized outbursts of solar energy that have the potential to cause brief radio blackouts on Earth and, at the very least, spark bright aurorae around the upper latitudes.

According to SpaceWeather.com, AR1654 “could be the sunspot that breaks the recent lengthy spell of calm space weather around our planet.”

The image above, captured by NASA’s Solar Dynamics Observatory earlier today, shows the structure of AR1654 upon the Sun’s photosphere — its light-emitting “surface” layer. Stretching many tens of thousands of miles, this magnetic solar blemish easily dwarfs our entire planet. And it’s not just a prediction that this sunspot will unleash a flare — it already has.

AR1654 came around the limb of the sun crackling with activity. Shortly after the probability of AR1654 releasing a flare was raised to 50% it did just that, letting loose with a burst of magnetic energy that was observed by SDO’s multi-channel cameras. Watch the video below:

Peaking at 9:11 UTC, this M1-class flare won’t have much more effect on Earth than perhaps some radio and GPS interference and maybe increased auroral activity. But AR1654 is still evolving and growing… and moving to face us.

In the meantime, solar astronomers and observatories like SDO are keeping an ever-watchful eye on this magnetic monster.

Keep up with the latest news here on Universe Today, on the SDO mission site and on spaceweather.com.

UPDATE 1/12: According to the NOAA, AR1654 has a 5% chance of producing an X-class flare, based on its current magnetic activity and alignment.

A sunspot is a magnetically active region on the sun that appears dark because it’s relatively cooler than the surrounding area—6,000ºF (3,300ºC) versus 10,000ºF (5,500º C). Sunspots are where solar flares are most likely to occur since the magnetic fields in these active regions can build up enough energy to break, releasing bursts of intense radiation into the solar system.

Catching Sunlight: A TEDx Talk by DIY Solar Photographer Alan Friedman

Video poster frame shows Alan Friedman’s 90mm hydrogen alpha telescope setup — nicknamed “Little Big Man” — on an Astro-Physics 900 equatorial mount.

We’ve featured several beautiful images of the Sun here on Universe Today, captured by the talented Alan Friedman from his backyard telescope in Buffalo, NY. While photos of the Sun in and of themselves are nothing new in astronomy, Alan’s images always seem to bring out the best in our home star. Maybe it’s the magical nature of hydrogen alpha photography, maybe it’s Alan’s fancy new Grasshopper CCD camera, maybe the Sun’s photosphere was looking particularly nice on those days… but most likely Alan just has an innate skill for solar photography (as well as one for picking out great hats!)

In the video above, Alan talks to an audience at a TEDx event in Buffalo on October 9, sharing some of his photos and explaining why he does what he does, and why he feels do-it-yourself astrophotography is such a valuable thing to share with others. It’s a great bit of insight from a talented artist (and you just might recognize the names he drops at 13:55!)

I was happy to share one of Alan’s images on my own website back in 2010, which Phil Plait (the “Bad Astronomer,” who was then with Discover Magazine) picked up on and soon enough the whole thing got Alan quite a bit of attention. Which, when you’re an astrophotographer and graphic artist (he also sells art prints of his work as well as runs a greeting card studio) is never a bad thing.

Image of the Sun in hydrogen alpha. ©2010 Alan Friedman. All rights reserved. Used with permission.

You can see more of Alan’s work on his Averted Imagination blog and website and, on occasion, here on Universe Today!

Incoming! CME On Its Way Toward Earth

As you read this, a huge cloud of charged solar particles is speeding toward our planet, a coronal mass ejection resulting from the X1.4-class flare that erupted from sunspot 1520 on July 12. The CME is expected to collide with Earth’s magnetic field on Saturday, potentially affecting satellite operations and tripping alarms on power grids, as well as boosting auroral activity. It’s on its way, and all we can do is wait. (Thank goodness for magnetospheres!)

Actually, the effects from the incoming CME aren’t expected to be anything particularly dramatic. NOAA is predicting a geomagnetic storm level raging from G2 to G4, which although ranges from “moderate” to “severe” a G2 (Kp = 6) is most likely, according to Dr. C. Alex Young from NASA’s Goddard Space Flight Center.

[Read: What Is a CME?]

“A G2 level storm can cause some power fluctuations that may set off some voltage alarms for power companies,” Dr. Young told Universe Today. “Damage to transformers is possible for longer events, but unlikely. Satellite companies may have to make some orbit corrections for their satellites, and at higher latitudes where there are aurora they can be some disruption of high frequency radio broadcasts.

“All in all the effects should be minor,” he concluded.

And this may not be the last we hear from 1520, either.

“Its complexity has decreased but it is still large and has a ‘delta’ configuration,” added Dr. Young, “when there is opposite polarity magnetic field of the umbra within the penumbra of the sunspot. This is an unstable configuration that is indicative of larger releases of energy, lots of flares — in particular M and X flares.”

Below is a computer model of the CME from Goddard Space Weather Center. Impact with Earth is expected on 7/14 at 10:20 UT (+-7 hrs), 6:20 am EDT.

Auroras may be visible at lower latitudes this weekend, so check the NOAA’s updated auroral oval map to see if visibility extends into your area over the next several nights. Hopefully aurora photographers around the world will be able to get some great photos of a summer sky show!

You can keep up with the latest news on solar activity on Dr. Young’s blog, The Sun Today. And of course, stay tuned to Universe Today for more updates on any noteworthy space weather!

The video below uses SDO AIA footage in 131(teal), 171(gold) and 335 (blue) angstrom wavelengths, and shows the X1.4 class flare erupted from the center of the sun on July 12, 2012 at 12:52 PM EDT. Each wavelength shows different temperature plasma in the sun’s atmosphere. 171 shows 600,000 Kelvin plasma, 335 shows 2.5 million Kelvin plasma, and 131 shows 10 million Kelvin plasma. The final shot is a composite of 171 and 335 angstrom footage.

Top image: illustration of a CME about to impact Earth’s magnetosphere (NASA). Model animation: NASA/GSFC. Video courtesy NASA/SDO and the AIA science team.

UPDATE: The CME took a bit longer to arrive than expected, but impact with Earth’s magnetic field was detected at around 1800 UT (11 a.m. PDT/2 p.m. EDT), activating a geomagnetic storm. According to SpaceWeather.com: At the moment, conditions appear favorable for auroras over high-latitude places such as Canada, Scandinavia, Antarctica and Siberia. It is too early to say whether the storm will intensify and bring auroras to middle latitudes as well.

Sunspot 1520 Fires a Flare

Remember that cool animation I posted earlier of AR1520 and how I said there’s no guarantee it wouldn’t unleash an X-class flare? Well at 16:48 UT today, it did. Just goes to show there’s no guarantees in space!

The X1.4-class flare will most likely affect Earth’s magnetic field as 1520 is directly facing us. Stay tuned for more!

Video & image: NASA/SDO and the AIA science team.

UPDATE: The CME associated with this flare is expected to impact Earth’s magnetosphere on Saturday between 3 and 5 p.m. EDT with “moderate to severe” activity possible. See an animated tracker here. (H/T to Francis Reddy at GSFC.) Also in the lineup for impact are MESSENGER and MSL.

A Shimmering, Simmering Sunspot

This quick animation made by astrophotographer Alan Friedman shows a 30-minute view of sunspot 1520, a large region of magnetic activity on the Sun that’s currently aimed directly at Earth. Although 1520 has been quiet for the past couple of days, it’s loaded with a delta-class magnetic field — just right for launching powerful X-class flares our way. There’s no guarantee that it will, but then there’s no guarantee that it won’t either.

(Click the image to play the animation.)

Alan captured the images from his location in upstate New York using a 10″ Astro-Physics scope and PGR Grasshopper CCD. A master at solar photography — several of his hydrogen alpha images have been featured here on Universe Today as well as other popular astronomy news sites — Alan’s work never fails to impress.

A static, color version of sunspot 1520 can be seen here… what Alan calls “a magnetic beauty.”

Although the sunspots don’t change much over the course of the animation, the surrounding texture on the Sun’s photosphere can be seen to shift and move rapidly. These bright kernels are called granules, and are created by convective currents on the Sun. An individual granule typically lasts anywhere from 8 to 20 minutes and can be over 600 miles (1000 km) across.

The overall wavering effect is caused by distortion from Earth’s atmosphere.

While 1520 is facing Earth we’re subject to any flares or CMEs that may erupt from it, potentially sending a solar storm our way. In another week or so it will have rotated safely around the Sun’s limb and eventually dissipate altogether… but then, it is solar maximum and so there’s likely to be more active regions just like it (or even larger!) coming around the bend.

When they do come, there’s a good chance that Alan will grab some pics of those too.

Check out more of Alan’s photography on his site AvertedImagination.com.

Image © Alan Friedman. All rights reserved.

 

The “Deep Blue Sea” of the Sun

Looking like an intricate pen-and-ink illustration, the complex and beautiful structures of the Sun’s surface come to life in yet another stunning photo by Alan Freidman, captured from the historic Mount Wilson Observatory near Los Angeles, California.

Click below for the full-size image in all its hydrogen alpha glory.


An oft-demonstrated master of solar photography, Alan took the image above while preparing for the transit of Venus on June 5 — which he also skillfully captured on camera (see a video below).

Hydrogen is the most abundant element found on the sun. The sun’s “surface” and the layer just above it — the photosphere and chromosphere, respectively — are regions where atomic hydrogen exists profusely in upper-state form. It’s these absorption layers that hydrogen alpha imaging reveals in detail.

The images above are “negatives”… check out a “positive” version of the same image here.

” The seeing was superb… definitely the best of the visit and among the best solar conditions I’ve ever experienced,” Alan writes on his blog.

The video below was made by Alan on June 5, showing Venus transiting the Sun while both passed behind a tower visible from the Observatory.

Alan’s work is always a treat… see more of his astrophotography on his website AvertedImagination.com.

Image © Alan Friedman. All rights reserved.

A Rare Type of Solar Storm Spotted by Satellite

[/caption]

When a moderate-sized M-class flare erupted from the Sun on May 17, it sent out a barrage of high-energy solar particles that belied its initial intensity. These particles traveled at nearly the speed of light, crossing the 93 million miles between the Sun and Earth in a mere 20 minutes and impacting our atmosphere, causing cascades of neutrons to reach the ground — a rare event known as a ground level enhancement, or GLE.

The first such event since 2006, the GLE was recorded by a joint Russian/Italian spacecraft called PAMELA and is an indicator that the peak of solar maximum is on the way.

The PAMELA spacecraft — which stands for Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics — is designed to detect high-energy cosmic rays streaming in from intergalactic space. But on May 17, scientists from NASA’s Goddard Space Flight Center convinced the Russian team  in charge of PAMELA to grab data from the solar event occurring much closer to home.

This graph shows the neutrons detected by a neutron detector at the University of Oulu in Finland from May 16 through May 18, 2012. (University of Oulu/NASA's Integrated Space Weather Analysis System)

The result: the first observations from space of the solar particles that trigger the neutron storms that make up a GLE. Scientists hope to use the data to learn more about how GLEs are created, and why the May 17 “moderate” solar flare ended up making one.

“Usually we would expect this kind of ground level enhancement from a giant coronal mass ejection or a big X-class flare,” said Georgia de Nolfo, a space scientist at NASA’s Goddard Space Flight Center. “So not only are we really excited that we were able to observe these particularly high energy particles from space, but we also have a scientific puzzle to solve.”

Fewer than 100 GLEs have been recorded in the last 70 years, with the most powerful having occurred on February 23, 1956. Like most energetic solar outbursts, GLEs can have disruptive effects on sensitive electronics in orbit as well as on the ground, and based on recent studies may even have adverse effects on cellular systems and development.

The M-class flare from AR 1476 on May 17, 2012 (at right) Courtesy NASA/SDO and the AIA science team.

Read more on the NASA news release here.

How Big Are Sunspots?

[/caption]

The short answer? Really big. The long answer? Really, really big.

The image above shows sunspot regions in comparison with the sizes of Earth and Jupiter, demonstrating the sheer enormity of these solar features.

Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.

(Read “What Are Sunspots?”)

The image on the left was acquired by NASA’s Solar Dynamics Observatory on May 11, 2012, showing Active Region 11476. The one on the right comes courtesy of the Carnegie Institution of Washington, and shows the largest sunspot ever captured on film, AR 14886. It was nearly the diameter of Jupiter — 88,846 miles (142,984 km)!

“The largest sunspots tend to occur after solar maximum and the larger sunspots tend to last longer as well,” writes SDO project scientist Dean Pesnell on the SDO is GO blog. “As we move through solar maximum in the northern hemisphere and look to the south to pick up the slack there should be plenty of sunspots to watch rotate by SDO.”

Sunspots are associated with solar flares and CMEs, which can send solar storms our way and negatively affect satellite operation and impact communications and sensitive electronics here on Earth. As we approach the peak of the current solar maximum cycle, it’s important to keep an eye — or a Solar Dynamics Observatory! — on the increasing activity of our home star.

(Image credit: NASA/SDO and the Carnegie Institution)