Asteroid Samples Were Once Part of a Wetter World

This is a microscope image of a dark Bennu particle, about a millimeter long, with a crust of bright phosphate. To the right is a smaller fragment that broke off. The presence of phosphate hints that Bennu may have once been part of an ocean world. Image Credit: Lauretta & Connolly et al. (2024) Meteoritics & Planetary Science

Nine months have passed since NASA’s OSIRIS-REx returned its samples of asteroid Bennu to Earth. The samples are some of the Solar System’s primordial, pristine materials. They’ve made their way into scientists’ hands, and their work is uncovering some surprises.

Some of the material in the samples indicates that Bennu had a watery past.

Continue reading “Asteroid Samples Were Once Part of a Wetter World”

Ancient Asteroid Impacts Left Serpentine Traces On Vesta: Study

The asteroid Vesta as seen by the Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

While “dark materials” may leave some of us thinking about a certain Philip Pullman book series, on the asteroid Vesta its presence belies something equally exotic: old smaller asteroid impacts on its surface.

The dark stuff on the lighter surface has puzzled researchers since it was discovered in 2011 (and has been brought up in other studies), but a new team says it has found that serpentine is among the components.  Because that mineral can’t survive temperatures that are more than 400 degrees Celsius (752 degrees Fahrenheit), this means that scenarios such as volcanic eruptions can’t have caused it. This leaves only smaller asteroids, the team says.

“These meteorites are regarded as fragments of carbon-rich asteroids. The impacts must have been comparatively slow, because an asteroid crashing at high speeds would have produced temperatures too high to sustain serpentine,” the Max Planck Institute for Solar System Research stated.

Image of the crater Numisia on Vesta, where researchers found the spectral signature of serpentine. Picture taken by NASA's Dawn spacecraft. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Image of the crater Numisia on Vesta, where researchers found the spectral signature of serpentine. Picture taken by NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

“In a previous study, scientists from the MPS had calculated how dark material would be distributed on Vesta as a result of a low-speed oblique impact. Their results are consistent with the distribution of dark material on the edge of one of the two large impact basins in the southern hemisphere.”

The results came from analyzing images the NASA Dawn spacecraft took of Vesta between July 2011 and September 2012. The researchers recalibrated the data and also backed up their results by examining serpentine in laboratory conditions.

The research was published in the journal Icarus and you can also read a summary of the research here, from a presentation at the 2014 Lunar and Planetary Science Conference.

Source: Max Planck Institute for Solar System Research