Veteran Multinational Trio Launches on Soyuz and Arrives at International Space Station

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

An all veteran multinational trio of astronauts and cosmonauts rocketed to orbit aboard a Russian Soyuz capsule and safely arrived at the International Space Station (ISS) after a fast track rendezvous on Friday, July 28.

NASA astronaut Randy Bresnik, Sergey Ryazanskiy of Roscosmos and Paolo Nespoli of ESA (European Space Agency) docked at the orbiting outpost at 5:54 p.m. EDT (2154 GMT) Friday just six hours after departing our Home Planet.

The three crewmates launched aboard the Russian Soyuz MS-05 spacecraft from the Baikonur Cosmodrome in Kazakhstan during a typically hot mid-summers night at 9:41 p.m. Baikonur time, or 11:41 a.m. EDT, 1541 GMT, as the booster and Baikonur moved into the plane of the space station’s orbit. They blasted to space from the same pad as Yuri Gagarin, the first man in space.

The entire launch sequence aboard the Soyuz rocket performed flawlessly and delivered the Soyuz capsule to its targeted preliminary orbit flowing by the planned opening of the vehicles solar arrays and antennas.

The Russian Soyuz MS-05 carrying NASA astronaut Randy Bresnik, Sergey Ryazanskiy of the Russian space agency Roscosmos, and Paolo Nespoli of ESA (European Space Agency) docked to the International Space Station at 5:54 p.m. on Friday, July 28, 2017. Credits: NASA Television

Following a rapid series of orbit raising maneuvers, the Soyuz reached the ISS after 4 orbits and six hours to successfully complete all the rendezvous and docking procedures.

The Soyuz docked at the Earth-facing Russian Rassvet module as the spaceships were flying some 250 mi (400 km) over Germany.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

Following the standard pressurization and leak checks, the hatches between the spacecraft and station were opened from inside the ISS at about 9:45 p.m. EDT.

The new trio of Bresnik, Ryazanskiy and Nespoli then floated one by one from the Soyuz into the station and restored the outpost to a full strength crew of six humans.

The veteran space flyers join Commander Fyodor Yurchikhin of Roscosmos and Flight Engineers Peggy Whitson and Jack Fischer of NASA who are already serving aboard.

Thus begins Expedition 52 aboard the million pound orbiting science complex.

The Soyuz MS-05 rocket is launched with Expedition 52 flight engineer Sergei Ryazanskiy of Roscosmos, flight engineer Randy Bresnik of NASA, and flight engineer Paolo Nespoli of ESA (European Space Agency), Friday, July 28, 2017 at the Baikonur Cosmodrome in Kazakhstan. Photo Credit: (NASA/Joel Kowsky)

This is the second space flight for both Bresnik and Ryazanskiy and the third for Nespoli.

Bresnik previously flew to the space station as a member of the STS-129 space shuttle Atlantis mission in November 2009. The 10 day mission delivered two Express Logistics Carriers (ELC racks) to the space station as part of approximately 30,000 pounds of replacement parts.

Bresnik performed two spacewalks for a total of 11 hours and 50 minutes during the STS-129 mission. He is slated to take command of the ISS as a member of Expedition 53.

The six person crew of Space Shuttle Atlantis walk out from crew quarters at 10:38 AM to greet the cheering crowd of media and NASA officials and then head out to pad 39 A to strap in for space launch with hours. Randy Bresnik is third from left. Credit: Ken Kremer/kenkremer.com

The new Expedition 52 crew will spend a four and a half month stint aboard the station and continue over 250 ongoing science investigations in fields such as biology, Earth science, human research, physical sciences and technology development.

Bresnik, Ryazanskiy and Nespoli are slated to stay aboard until returning to Earth in December.

Whitson, Fischer and Yurchikhin are in the home stretch of their mission and will retun to Earth in September. Shortly after their departure, NASA astronauts Mark Vande Hei and Joseph Acaba and Russian cosmonaut Alexander Misurkin will launch on the next Soyuz from Kazakhstan to join the Expedition 53 crew.

Whitson is the most experienced US astronaut with time in space. Her record setting cumulative time in space will exceed 600 days and include a 9 month stay on this flight upon her return to Earth.

She most recently launched to the ISS last year on Nov 17, 2016 aboard a Russian Soyuz capsule from the Baikonur Cosmodrome. This is her 3rd long duration stay aboard the station.

Whitson also holds the record for most spacewalks by a female astronaut. Altogether she has accumulated 53 hours and 23 minutes of EVA time over eight spacewalks.

The newly-expanded Expedition 52 crew expect to welcome a pair of unmanned US cargo ships carrying new research experiments and supplies, namely the SpaceX Dragon as soon as August and Orbital ATK Cygnus a month or two later, on NASA-contracted commercial resupply missions.

The SpaceX CRS-12 mission will carry investigations ”the crew will work on including a study developed by the Michael J. Fox Foundation of the pathology of Parkinson’s disease to aid in the development of therapies for patients on Earth. The crew will use the special nature of microgravity in a new lung tissue study to advance understanding of how stem cells work and pave the way for further use of the microgravity environment in stem cell research. Expedition astronauts also will assemble and deploy a microsatellite investigation seeking to validate the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.”

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track

Video caption: Liftoff of unmanned Russian Progress craft atop Soyuz booster on Oct. 30, 2011 from Baikonur Cosmodrome. Credit: NASA TV/Roscosmos.
Photos and rocket rollout video below

The very future of the International Space Station was on the line this morning as the Russian Progress 45 cargo ship successfully launched this morning from the Baikonur Cosmodrome in Kazakhstan at 6:11 a.m. EDT (4:11 p.m. Baikonur time) on Oct. 30, 2011, bound for the ISS.

Today’s (Oct. 30) blastoff of the Soyuz rocket booster that is used for both the Progress cargo resupply missions and the Soyuz manned capsules was the first since the failure of the third stage of the prior Progress 44 mission on August 24 which crashed in Siberia.

[/caption]
The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

Today’s success therefore opens up the door to resumption of crewed flights to the ISS, which were grounded by Russia after the unexpected loss of the Progress 44 mission.

If this Progress flight had failed, the ISS would have had to be left in an uncrewed state for the first time since continuous manned occupation began more than 10 years ago and would have significantly increased the risk for survival of the ISS in the event of a major malfunction and no human presence on board to take swift corrective action.

Liftoff of Soyuz rocket with Progress 45 to ISS from Baikonur Cosmodrome in Kazakhstan.
Credit:RIA Novosti

NASA issued the following statement from Bill Gerstenmaier, associate administrator for Human Exploration and Operations at NASA Headquarters in Washington, about the launch of the Progress 45 spacecraft.

“We congratulate our Russian colleagues on Sunday’s successful launch of ISS Progress 45, and the spacecraft is on its way to the International Space Station. Pending the outcome of a series of flight readiness meetings in the coming weeks, this successful flight sets the stage for the next Soyuz launch, planned for mid-November. The December Soyuz mission will restore the space station crew size to six and continue normal crew rotations.”

Progress 45 is carrying nearly 3 tons of supplies to the ISS, including food, water, clothing, spare parts, fuel, oxygen and science experiments for use by the resident crews.

The resupply vehicle achieved the desired preliminary orbit after the eight and one half minute climb to space and deployed its solar arrays and communications antennae’s.

After a two day chase, Progress 45 will automatically link up with the ISS at the Pirs Docking Compartment on Nov. 2 at 7:40 a.m (EDT) and deliver 1,653 pounds of propellant, 110 pounds of oxygen and air, 926 pounds of water and 3,108 pounds of spare parts, experiment hardware and other supplies for the Expedition 29 crew.

Progress 45 atop Soyuz-U booster awaits liftoff from Baikonur Cosmodrome in Kazakhstan.
Credit: Roscosmos

The successful launch sets the stage for the launch of the station’s next three residents on Nov. 13. NASA’s Dan Burbank and Russia’s Anton Shkaplerov and Anatoly Ivanishin will arrive at the station Nov. 16, joining NASA’s Mike Fossum, Russia’s Sergei Volkov and Japan’s Satoshi Furukawa for about six days before Fossum, Volkov and Furukawa return home.

Liftoff of Burbank’s crew was delayad from the original date on September 22 following the Progress failure in August. Because of the delayed Soyuz crew launch, the handover period from one crew to the next had to be cut short.

Since the forced retirement of the Space Shuttle, the US has absolutely no way to send human crews to orbit for several years to come at a minimum and is totally reliant on Russia.

The survival of the ISS with humans crews on board is therefore totally dependent on a fully functioning and reliable Soyuz rocket.


Video caption: Rollout of Soyuz rocket and Progress cargo craft to Baikonur launch pad.

Read Ken’s continuing features about Soyuz from South America here:
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

Russia Fuels Phobos-Grunt and sets Mars Launch for November 9

[/caption]

Russia’s Space Agency, Roscosmos, has set November 9 as the launch date for the Phobos-Grunt mission to Mars and its tiny moon Phobos. Roscosmos has officially announced that the audacious mission to retrieve the first ever soil samples from the surface of Phobos will blastoff from the Baikonur Cosmodrome in Kazakhstan atop a Zenit-2SB rocket at 00:16 a.m. Moscow time.

Roscosmos said that engineers have finished loading all the propellants into the Phobos-Grunt main propulsion module (cruise stage), Phobos lander and Earth return module at Facility 31 at Baikonur.

Phobos-Grunt is Russia’s first mission to Mars in almost two decades and a prelude to an ambitious program of even more interplanetary Russian science flights.

Russian Phobos-Grunt spacecraft is set to launch to Mars on November 9, 2011.
L-shaped soil sample transfer tube extends from Earth return module ( top -yellow) and solar panel to bottom (left) of lander module. 2 landing legs, communications antenna, sampling arm, propulsion tanks and more are visible. Credit Roscosmos

Technicians also fueled the companion Yinghou-1 mini-satellite, provided by China, that will ride along inside a truss segment between the MDU propulsion module and the Phobos-Grunt lander.

The 12,000 kg Phobos-Grunt interplanetary spacecraft is being moved to an integration and test area at Facility 31 for integration with the departure segments of the Zenit rocket.

The next step is to enclose Phobos-Grunt inside the protective payload fairing and transport it to Facility 42 for mating atop the upper stage of the stacked Zenit-2SB booster rocket.

After about an 11 month journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The goal of the bold mission is to retrieve up to 200 grams of soil and rock from Phobos and return them to Earth in August 2014. The samples will help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System.

Scientists hope that bits of Martian soil will be mixed in with Phobos soil.

Phobos-Grunt is equipped with a powerful 50 kg payload of some 20 international science instruments.

The 110 kg Yinghou-1, which translates as Firefly-1, is China’s first spaceship to voyage to Mars. It will be jettisoned by Phobos-Grunt into a separate orbit about Mars. The probe will photograph the Red planet with two cameras and study it with a magnetometer to explore Mars’ magnetic field and science instruments to explore its upper atmosphere.

Earth’s other mission to Mars in 2011, NASA’s Curiosity rover, is set to blast off for Mars on Nov. 25

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter

Read Ken’s continuing features about Russia’s Phobos-Grunt Mars mission here::
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

Read Ken’s continuing features about Curiosity starting here:
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

[/caption]

Barely in the nick of time, Russia’s groundbreaking Phobos-Grunt interplanetary spacecraft to Mars finally arrived on Monday (Oct. 17) at the Baikonur Cosmodrome launch site in Kazakhstan – and today (Oct. 18) an eye-popping collection of great images (see below) was at last published by Roskosmos, the Russian Federal Space Agency.

This first-of-its-kind spaceship is due to blast off quite soon – sometime in the first half of November – although Roskosmos has yet to announce an official launch date and time is running out. The deadline to Mars is Nov. 25.

Top view of Phobos-Grunt, sample return vehicle. Credit: Roskosmos.

The explicit close-up photos show both the Phobos-Grunt orbiter/lander vehicle and her companion Yinghou-1 Mars orbiter, built by China, being uncrated from a huge shipping container, uprighted and then showcased from many revealing angles from top to bottom, tilted from side to side and looking inside her hardware stack.

The photos illustrate the solar panels, landing legs, J-shaped soil sampling tube, Earth return vehicle and descent capsule, star trackers, communications antennae, maneuvering thrusters and more.

Top view of Phobos-Grunt, sample return vehicle. Credit: Roskosmos.

The Yinghou-1 mini-satellite is clearly visible tucked inside a truss situated between the Phobos-Grunt landing ship and the MDU propulsion stage.

Phobos-Grunt was just air shipped from Moscow to Baikonur inside an Antonov An-124-100 “Ruslan” cargo plane operated by “Polyot” airline.

The cargo canister was offloaded and transported by truck to Facility 31. The spacecraft was then placed on a test stand to begin an intense period of final prelaunch payload processing activites to ready the probe for launch.

The Zenit-2SB booster rocket also recently arrived at Baikonur for ongoing prelaunch processing at nearby Building 42.

Chinese Yinghou-1 mini-satellite tucked truss at right, situated below the Phobos-Grunt lander at left. Credit: Roskosmos.

Russia’s engineers and technicians will have to work diligently in the few weeks remaining in order to complete all preflight activities to achieve a liftoff to the Red Planet before the unforgiving and narrow launch window closes for another 26 months.

Phobos-Grunt Earth return spacecraft. Close-up view of solar panels, Earth descent capsule and soil sample transfer tube. Credit: Roskosmos.
Phobos-Grunt sample collecting and sample return vehicle. Credit: Roskosmos.

Tilted view of Phobos-Grunt attached to test stand for final prelaunch processing. Credit: Roskosmos.

Earth is actually lofting two exciting science missions to Mars this November. NASA’s Curiosity Mars Science Laboratory rover is due to blastoff on Nov. 25 and her launch window extends until Dec. 18. Both spaceships missed their initially targeted launch windows in 2009 due to the need to fix unresolved technical issues.

Phobos-Grunt is a daring sample return mission whose goal is to retrieve up to 200 grams of soil and rock from the tiny Martian moon Phobos, that will help elucidate the origin and evolution of Phobos, Mars and the Solar System.

Tilted view of Phobos-Grunt attached to test stand for final prelaunch processing. Credit: Roskosmos.

Side view of Phobos-Grunt and Yinghou-1 orbiter (bottom) attached to test stand for final prelaunch processing. Credit: Roskosmos.

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter

Read Ken’s continuing Mars features about Phobos-Grunt, Curiosity and Opportunity starting here:
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

Phobos-Grunt: The Mission Poster

[/caption]

Russia is marking the upcoming blastoff of their dauntingly complex Phobos-Grunt sample return mission to the Martian moon Phobos with the release of a quite cool looking mission poster – see above. Phobos-Grunt translates as Phobos-Soil and is due to liftoff on or about November 7, 2011 from the Baikonur Cosmodrome atop a Zenit rocket.

The holy grail of Mars exploration has long been a sample return mission. But with severe cutbacks to NASA’s budget that goal is realistically more than a decade away. That’s why Phobos- Grunt is so exciting from a scientific standpoint.

Phobos-Grunt Orbiter/Lander
Russia's Phobos-Grunt is designed to land on Mars' moon Phobos, collect soil samples and return them to Earth for study. The lander will also carry scientific instrumetns to study Phobos and its environment. It will travel to Mars together with Yinghuo-1, China's first mission to the Red Planet. Credit: NPO Lavochkin

Phobos-Grunt Robotic sampling arm. Credit: Roskosmos

If successful, this audacious probe will retrieve about 200 grams of soil from the diminutive moon Phobos and accomplish the round trip in three years time by August 2014. Scientists speculate that martian dust may coat portions of Phobos and could possibly be mixed in with any returned samples.

Included here are more photos and graphics of the Phobos-Grunt spacecraft which is equipped with two robotic arms and a sampling device to transfer regolith and rocks to the Earth return vehicle and an on board array of some 15 science instruments, including lasers, spectrometers, cameras and a microscope. Readers please feel free to help with Russian translations.

Phobos-Grunt Model
This is a full-scale mockup of Russia's Phobos-Grunt. The spacecraft will collect samples of soil on Mar's moon Phobos and to bring the samples back to Earth for detailed study. Credit: CNES

Phobos-Grunt is the first of Earth’s two missions launching to the Red Planet in 2011. NASA’s Curiosity Mars Science Laboratory is due to lift off on Nov. 25, 2011 from Cape Canaveral, Florida.

Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater

Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

[/caption]

In just over 3 weeks’ time, Russia plans to launch a bold mission to Mars whose objective, if successful , is to land on the Martian Moon Phobos and return a cargo of precious soil samples back to Earth about three years later.

The purpose is to determine the origin and evolution of Phobos and how that relates to Mars and the evolution of the solar system.

Liftoff of the Phobos-Grunt space probe will end a nearly two decade long hiatus in Russia’s exploration of the Red Planet following the failed Mars 96 mission and is currently scheduled to head to space just weeks prior to this year’s other Mars mission – namely NASA’s next Mars rover, the Curiosity Mars Science Laboratory (MSL).

Blastoff of Phobos-Grunt may come as early as around Nov. 5 to Nov. 8 atop a Russian Zenit 3-F rocket from the Baikonur Cosmodrome in Kazakhstan. The launch window extends until about Nov. 25. Elements of the spacecraft are undergoing final prelaunch testing at Baikonur.

Flight version of the Phobos-Grunt spacecraft during assembly in preparation for critical testing in thermal and vacuum chamber at NITs RKP facility closely imitating harsh conditions of the real space flight. Credit: NPO Lovochkin

Baikonur is the same location from which Russian manned Soyuz rockets lift off for the International Space Station. Just like NASA’s Curiosity Mars rover, the mission was originally intended for a 2009 launch but was prudently delayed to fix a number of technical problems.

“November will see the launch of the Phobos-Grunt interplanetary automatic research station aimed at delivering samples of the Martian natural satellite’s soil to Earth’” said Vladimir Popovkin, head of the Russian Federal Space Agency, speaking recently at a session of the State Duma according to the Voice of Russia, a Russian government news agency.

Phobos-Grunt spacecraft

The spacecraft will reach the vicinity of Mars after an 11 month interplanetary cruise around October 2012. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos. It will conduct a comprehensive analysis of the surface of the tiny moon and collect up to 200 grams of soil and rocks with a robotic arm and drill.

Russian Phobos-Grunt spacecraft prepares for testing inside the vacuum chamber. Credit: NPO Lavochkin

After about a year of surface operations, the loaded return vehicle will blast off from Phobos and arrive back at Earth around August 2014. These would be the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 in 1976.

“The way back will take between nine and 11 months, after which the return capsule will enter Earth’s atmosphere at a speed of 12 kilometers per second. The capsule has neither parachute nor radio communication and will break its speed thanks to its conical shape,” said chief spacecraft constructor Maksim Martynov according to a report from the Russia Today news agency. He added that there are two soil collection manipulators on the lander because of uncertainties in the characteristics of Phobos soil.

Phobos-Grunt was built by NPO Lavochkin and consists of a cruise stage, orbiter/lander, ascent vehicle, and Earth return vehicle.

The spacecraft weighs nearly 12,000 kg and is equipped with a sophisticated 50 kg international science payload, in particular from France and CNES, the French Space Agency.

Also tucked aboard is the Yinghou-1 microsatellite supplied by China. The 110 kg Yinghou-1 is China’s first probe to launch to Mars and will study the Red Planet’s magnetic and gravity fields and surface environment from orbit for about 1 year.

“It will be the first time such research [at Mars] will be done by two spacecraft simultaneously. The research will help understand how the erosion of Mars’ atmosphere happens,” said Professor Lev Zelyony from the Space Research Institute of the Russian Academy of Science, according to Russia Today.

Phobos-Grunt mission scenario. Credit: CNES
Phobos seen by Mars Express. Credit: ESA

Read Ken’s continuing features about Phobos-Grunt, Curiosity and Opportunity starting here:
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Opportunity spotted Exploring vast Endeavour Crater from Mars Orbit
Twin Towers 9/11 Tribute by Opportunity Mars Rover
NASA Robot arrives at ‘New’ Landing Site holding Clues to Ancient Water Flow on Mars
Opportunity Arrives at Huge Martian Crater with Superb Science and Scenic Outlook
Opportunity Snaps Gorgeous Vistas nearing the Foothills of Giant Endeavour Crater
Opportunity Rover Heads for Spirit Point to Honor Dead Martian Sister; Science Team Tributes