Space Station’s Robonaut 2 Is Getting More Astronaut-Like By The Day

Robonaut 2

NASA’s large space station robot now has legs and a plan to (eventually) head outside to do spacewalks, to replace some of the more routine tasks taken on by astronauts. Robonaut 2 has actually been on the International Space Station since 2011, but only received the extra appendages in the past few days.

The robot is capable of flipping switches, moving covers and with the legs, clamping on to spots around the station. Check out the videos below to see some of the stuff that it is already capable of. It’s both creepy and amazing to watch.

Return of the SpaceX-3 Dragon to Earth Caps Super Science Mission for NASA

SpaceX-3 Dragon commercial cargo freighter was detached from the ISS at 8 AM EDT on May 18, 2014 and released by station crew at 9:26 AM for splashdown in the Pacific Ocean with science samples and cargo. Credit: NASA
Story updated[/caption]

The 30 day flight of the SpaceX-3 Dragon commercial cargo freighter loaded with a huge cache of precious NASA science experiments including a freezer packed with research samples ended today with a spectacular departure from the orbiting lab complex soaring some 266 miles (428 km) above Earth.

Update 3:05 PM EDT May 18: SpaceX confirms successful splashdown at 3:05 p.m. EDT today.

“Splashdown is confirmed!! Welcome home, Dragon!”

Robotics officers at Mission Control at NASA’s Johnson Space Center detached Dragon from the Earth-facing port of the Harmony module at 8 a.m. EDT (1300 GMT) this morning, Sunday, May 18, 2014 using the stations Canadian-built robotic arm.

Engineers had earlier unbolted all 16 hooks and latches firmly connecting the vehicle to the station in preparation.

NASA astronaut Steve Swanson then commanded the gum dropped shaped Dragon capsule’s release from Canadarm2 as planned at 9:26 a.m. EDT (1326 GMT) while the pair were flying majestically over southern Australia.

The undocking operation was shown live on NASA TV.

The SpaceX Dragon commercial cargo craft was in the grips of the Canadarm2 before being released for a splashdown in the Pacific Ocean.  Credit: NASA
The SpaceX Dragon commercial cargo craft was in the grips of the Canadarm2 before being released for a splashdown in the Pacific Ocean. Credit: NASA

Swanson was assisted by Russian cosmonaut Alexander Skvortsov as the US- Russian team were working together inside the domed Cupola module.

Following the cargo ships release by the 57 foot long arms grappling snares, Swanson carefully maneuvered the arm back and away from Dragon as it moved ever so slowly in free drift mode.

It was already four feet distant within three minutes of release.

Three departure burns by the Dragon’s Draco maneuvering thrusters followed quickly in succession and occurred precisely on time at 9:29, 9:30 and 9:38 a.m. EST.

Dragon exited the 200 meter wide keep out zone – an imaginary bubble around the station with highly restricted access – at the conclusion of the 3rd departure burn.

“The Dragon mission went very well. It was very nice to have a vehicle take science equipment to the station, and maybe some day even humans,” Swanson radioed after the safe and successful departure was completed.

“Thanks to everyone who worked on the Dragon mission.”

The private SpaceX Dragon spent a total of 28 days attached to the ISS.

The six person international crew from Russia, the US and Japan on Expeditions 39 and 40 unloaded some 2.5 tons of supplies aboard and then repacked it for the voyage home.

The SpaceX resupply capsule is carrying back about 3500 pounds of spacewalk equipment, vehicle hardware, science samples from human research, biology and biotechnology studies, physical science investigations and education activities, as well as no longer needed trash.

“The space station is our springboard to deep space and the science samples returned to Earth are critical to improving our knowledge of how space affects humans who live and work there for long durations,” said William Gerstenmaier, associate administrator for human exploration and operations.

“Now that Dragon has returned, scientists can complete their analyses, so we can see how results may impact future human space exploration or provide direct benefits to people on Earth.”

Among the research investigations conducted that returned samples in the cargo hold were an examination of the decreased effectives of antibiotics in space, better growth of plants in space, T-Cell activation in aging and causes of human immune system depression in the microgravity environment.

The 10 minute long deorbit burn took place as scheduled at 2:10 p.m. EDT (1810 GMT) today.

Dragon returned to Earth for a triple parachute assisted splash down today at around 3:02 p.m. EDT (19:02 GMT) in the Pacific Ocean – some 300 miles west of Baja California.

Dragon is free flying after release from ISS at 9:26 a.m. EDT on May 18, 2014. Credit: NASA
Dragon is free flying after release from ISS at 9:26 a.m. EDT on May 18, 2014. Credit: NASA

It will be retrieved by recovery boats commissioned by SpaceX. The science cargo will be extracted and then delivered to NASA’s Johnson Space Center within 48 hours.

Dragon thundered to orbit atop SpaceX’s powerful new Falcon 9 v1.1 rocket on April 18, from Cape Canaveral, Fla.

This unmanned Dragon delivered about 4600 pounds of cargo to the ISS including over 150 science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), the laser optical communications experiment (OPALS), the VEGGIE lettuce growing experiment as well as essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard in low Earth orbit.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those delivered to the ISS on the SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

It reached the ISS on April 20 for berthing.

Dragon is the only unmanned resupply vessel supply that also returns cargo back to Earth.

The SpaceX-3 mission marks the company’s third resupply mission to the ISS under the $1.6 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

The SpaceX Dragon is among a trio of American vehicles, including the Boeing CST-100 and Sierra Nevada Dream Chaser vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.

Another significant milestone was the apparently successful attempt by SpaceX to accomplish a controlled soft landing of the Falcon 9 boosters first stage in the Atlantic Ocean for eventual recovery and reuse. It was a first step in a guided 1st stage soft landing back at the Cape.

The next unmanned US cargo mission to the ISS is set for early morning on June 10 with the launch of the Orbital Sciences Cygnus freighter atop an Antares booster from a launch pad at NASA’s Wallops Flight Facility on the eastern shore of Virginia.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, Boeing, commercial space, Orion, Chang’e-3, LADEE, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

SpaceX Cargo Launch to Station “GO” for April 14 – Watch Live Here

SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek
Watch the SpaceX Launch Live here – NASA TV link below[/caption]

Following closely on the heels of Thursday’s spectacular Atlas V rocket blastoff from Cape Canaveral and a last moment computer failure at the ISS over the weekend, an upgraded Space X Falcon 9 rocket is now poised to launch on Monday (April 14) and complete a double barreled salvo of liftoffs from the Florida Space Coast merely 4 days apart – if all goes well.

The SpaceX Falcon 9 rocket carrying a Dragon resupply freighter is slated to launch on Monday at 4:58 p.m. EDT, 2058 GMT, from Launch Complex 40 at the Cape Canaveral Air Force Station, Fla.

Update 4/14- 345 PM: Todays launch attempt scrubbed due to 1st stage Helium leak. Friday is earliest target date

This flight marks the third operational Dragon resupply mission to the 1 million pound International Space Station (ISS).

You can watch the launch live on NASA TV : http://www.nasa.gov/ntv

NASA TV live coverage will begin at 3:45 p.m. EDT and conclude at approximately 5:20 p.m.

Weather forecasters are predicting an 80 percent chance of favorable weather conditions at the scheduled liftoff time.

SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla.  Credit: Julian Leek
SpaceX Falcon 9 rocket preparing for April 14, 2014 liftoff from Space Launch Complex 40 at the Cape Canaveral Air Force Station, Fla. Credit: Julian Leek

Monday’s launch was temporarily put in doubt by the unexpected loss on Friday (April 11) of a backup computer command relay box called a multiplexer/demultiplexer (MDM) that resides in the station’s S0 truss.

The primary MDM continued to function normally.

The MDM’s provide commanding to the station’s external cooling system, Solar Alpha Rotary joints, Mobile Transporter rail car and insight into other truss systems.

It must function in order for the astronauts to use the robotic arm to grapple and berth the Dragon at a station docking port when it arrives on Wednesday, April 16, at about 7 a.m. EDT.

NASA managers held an extensive series of review meetings since Friday with ISS program managers, station partners, and SpaceX to exhaustively consider all possibilities and insure it was safe to fly the Dragon mission.

NASA gave the final go ahead after a readiness review this Sunday morning of managers, engineers and flight controllers.

ISS crew members will conduct a spacewalk to replace the failed MDM unit after the Dragon arrives.

This unmanned SpaceX mission dubbed CRS-3 mission will deliver some 5000 pounds of science experiments, a pair of hi tech legs for Robonaut 2, a high definition imaging camera suite, an optical communications experiment (OPALS) and essential gear, the VEGGIE lettuce growing experiment, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard the ISS soaring in low Earth orbit under NASA’s Commercial Resupply Services (CRS) contract.

Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer - kenkremer.com
Robonaut 2 engineering model equipped with new legs like those heading to the ISS on upcoming SpaceX CRS-3 launch were on display at the Kennedy Space Center Visitor Complex on March 15, 2014. Credit: Ken Kremer – kenkremer.com

This launch has already been postponed twice since mid-March.

The original March 16 launch target was postponed 2 days before liftoff due to contamination issues with insulation blankets located inside the unpressurized trunk section of Dragon.

The second postponement from March 30 occurred when an electrical short knocked out the critical Air Force tracking required to insure a safe launch from the Eastern Range in case the rocket veers off course towards populated ares and has to be destroyed in a split second.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

To date SpaceX has completed two operational cargo resupply missions and a test flight. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013 atop the initial version of the Falcon 9 rocket.

The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30.  Credit: SpaceX
The Falcon 9 rocket with landing legs in SpaceX’s hangar at Cape Canaveral, Fl, preparing to launch Dragon to the space station this Sunday March 30. Credit: SpaceX
Another major goal for SpaceX with this launch involves the attachment of landing legs to the first stage of the firm’s next-generation Falcon 9 rocket that counts as a major first step towards a future goal of building a fully reusable rocket.

For this Falcon 9 flight, the rocket will sprout legs for a controlled soft landing in the Atlantic Ocean, guided by SpaceX engineers.

Eventually SpaceX will test land landings in a ramped up series of rocket tests

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

US Spy Sat and SpaceX Set for Double Barreled Blastoffs After Critical Cape Canaveral Radar Revitalized

The Florida Space Coast is about to ignite with a doubled barreled dose of spectacular rocket launches from Cape Canaveral over the next few days that were suddenly postponed two weeks ago amidst final launch preparations when an electrical short completely knocked out use of the US Air Force’s crucial tracking radar that is mandatory to insure public safety.

A pair of liftoffs vital to US National Security and NASA/SpaceX are now slated for April 10 and April 14 from Cape Canaveral Air Force Station after revitalizing the radar systems.

The tracking radar is an absolutely essential asset for the Eastern Range that oversees all launches from Cape Canaveral Air Force Station and the Kennedy Space Center in Florida.

The United Launch Alliance Atlas V is now slated to launch on Thursday, April 10 at 1:45 p.m. EDT.

Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA
Artwork for Super Secret NROL-67 payload launching on Atlas V rocket. Credit: NRO/ULA

The Atlas V rocket is carrying the super secret NROL-67 intelligence gathering spy satellite for the National Reconnaissance Office (NRO).

The SpaceX Falcon 9 is slated to launch on Monday, April 14 at 4:58 p.m. EDT.

The Falcon 9 is lofting a SpaceX Dragon cargo ship and delivering some 5000 pounds of science experiments and supplies for the six man space station crew – under a resupply contract with NASA.

The pair of liftoffs of the Atlas V and Falcon 9 boosters for the NRO and SpaceX/NASA had been slated just days apart on March 25 and March 30, respectively.

Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX
Falcon 9 and Dragon static fire test on March 8, 2014. Credit: SpaceX

I was on site at Cape Canaveral Launch Pad 41 photographing the Atlas V rocket carrying the NRO payload in anticipation of the launch.

Shortly thereafter a fire of unexplained origin in the radar equipment unexpected occurred and knocked the tracking radar off line. When no quick fix was possible, both launches were delayed indefinitely pending repairs.

“The tracking radar experienced an electrical short, overheating the unit and rendering the radar inoperable,” said the USAF in a statement I received from the 45th Space Wing that controls the critical launch control systems, communications, computers and radar elements at the Eastern Range.

On Monday, April 7, the Air Force announced that range repairs were on target and that a retired, inactive radar had been brought back online.

“A radar that was previously in standby status has been brought back to operational status while the repair work is being accomplished,” said the USAF in a statement.

A fully functional tracking radar is an absolute requirement to ensure the success and safety of every rocket launch.

Insufficient maintenance and antiquated equipment due to a lack of US government funding and investment in infrastructure may be at fault for the electrical short.

The Eastern range radar must function perfectly in order to destroy any rocket in a split second in the event it abruptly veers off course towards the nearby populated areas along the Florida Space Coast.

The Atlas V rocket was rolled out earlier today to Space Launch Complex 41 in preparation for Thursday’s NROL-67 launch. The weather forecast shows a 90 percent chance of favorable weather conditions for launch.

The Dragon spacecraft, filled with about 4,600 lbs of cargo bound for the space station, is mated with Falcon 9.  Credit: SpaceX
The Dragon spacecraft, filled with about 4,600 lbs of cargo bound for the space station, is mated with Falcon 9. Credit: SpaceX

Stay tuned here for Ken’s continuing Atlas V NROL 67, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13.

Ken Kremer

6-Year-Old ‘Right Stuff’ Boy Reaches for the Stars with Petition Drive and Astronauts to Save NASA Funding

KENNEDY SPACE CENTER VISITOR COMPLEX, FL- When 6-year-old Connor Johnson from Denver, Colo. heard that his youthful dreams of going to Mars and ‘Reaching for the Stars’ were in danger due to funding cuts to NASA’s budget, he decided to do something about it.

So, with the encouragement of his parents, Connor started an online petition drive on the White House website in December 2013 to help save NASA’s budget and fulfill his dreams.

Connor’s petition drive efforts were noticed by a Denver TV station that broadcast a report on the young lads work that spurred his efforts.

Over 22,000 folks have already signed Connor’s petition.

That’s when the Kennedy Space Center Visitor Complex noticed his zeal in communicating the excitement and benefits of science and space voyages.

The KSC Visitor Complex invited Connor and to visit as a guest of honor with his family and to participate in the first ever ‘Robot Rocket Rally’ held this past weekend from March 14 to 16.

At a special ‘guest of honor’ ceremony held on Saturday, NASA recognized Connor’s unique contributions to space exploration with a public meeting at the Visitor Complex with Kennedy Space Center Director and space shuttle commander Bob Cabana.

Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.  Credit: Ken Kremer - kenkremer.com
Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding. Credit: Ken Kremer – kenkremer.com

Cabana, who flew four shuttle missions, gave Connor several mementos, including a mission patch and an actual bolt from the International Space Station, as a token of appreciation from the agency.

“I think it’s great for Connor to be so interested in the future of NASA,” Kennedy Center Director Bob Cabana said.

“It shows great initiative on his part to do what he’s done.”

Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.  Credit: Ken Kremer - kenkremer.com
Connor Johnson, 6, talks with former space shuttle commander Bob Cabana, director of Kennedy Space Center, about spaceflight during a ceremony Saturday, March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana in appreciation of Connor initiating a petition to the White House to maintain NASA funding.
Credit: Ken Kremer – kenkremer.com

“Ultimately, the budget supports what we want to do with continuing International Space Station research and technology which will feed into SLS and Orion, leading to the asteroid initiative and on to Mars.”

“And it will dictate how we work with commercial partners to launch our astronauts from U.S. soil,” Cabana explained.

Millions of kids of all ages worldwide have been inspired by NASA for generations to pursue their dreams of science research and exploring space.

After the ceremony with Bob Cabana, the media including myself met with Connor.

I asked Connor when he became interested in space and where did he want to journey.

“I’ve been interested in NASA and space since I was three years old.”

“I want to be an astronaut and go to Mars!” Connor told Universe Today.

Since NASA currently plans to send the first manned mission to Mars in the 2030s, Connor is just about the right age.

Connor Johnson clearly exhibits the ‘Right Stuff.’

So much so that Apollo 17 Astronaut and Moon walker Eugene Cernan also spoke with Connor upon hearing of his work to save NASA’s funding.

What did Cernan say to Connor?

“Dream the unimaginable,” Moon walker Eugene Cernan said to 6-year old future Mars walker Connor Johnson.

During his visit to the Visitor Complex, Connor also visited with the Earth bound brother of NASA’s Robonaut 2 at the ‘Robot Rocket Rally’ and saw a demonstration of the robots new legs heading soon to the ISS on the SpaceX CRS-3 mission later this month. He and his younger brother also operated other robots at the festival.

Connor and his family spent the rest of the weekend touring the new Space Shuttle Atlantis pavillion, enjoyed Lunch With An Astronaut, featuring space shuttle astronaut Sam Durrance, and participated in the Astronaut Training Experience with space shuttle astronaut Mike McCulley.

What a thrilling way to begin a space career.

Way to go Connor!

Connor Johnson (Future astronaut) and Ken Kremer (Universe Today) at the ceremony with former space shuttle commander Bob Cabana, on March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana. Johnson, of Denver, Colo., initiated a petition to the White House to maintain NASA funding. Credit: Jason Rhian/Spaceflight Insider
Connor Johnson (Future astronaut) and Ken Kremer (Universe Today) at the ceremony with former space shuttle commander Bob Cabana, on March 15, at the Kennedy Space Center Visitor Complex. Connor holds the ISS bolt given to him by Cabana. Credit: Jason Rhian/SpaceFlight Insider

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13 and at Washington Crossing State Park, NJ on April 6. Also evenings at the Quality Inn Kennedy Space Center, Titusville, FL, March 24/25 and March 29/30.

And watch for Ken’s SpaceX launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

The new Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex, Florida.  Credit: Ken Kremer - kenkremer.com
The new Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex, Florida. Credit: Ken Kremer – kenkremer.com

Robonaut 2 To Toddle And Waddle Around Space Station This Summer

Legs — yes, legs — are on the manifest for the next SpaceX Dragon flight. The commercial spacecraft is expected to blast off March 16 with appendenges for Robonaut 2 on board, allowing the humanoid to move freely around station. After some initial tests in June will come R2’s first step, marking a new era in human spaceflight.

What’s exciting about R2 is not only its ability to take over simple tasks for the astronauts in station, but in the long run, to head “outside” to do spacewalks. This would greatly reduce risk to the astronauts, as extravehicular activity is one of the most dangerous things you can do outside (as a spacesuit leak recently reminded us.)

When installed, Robonaut will have a “fully extended leg span” of nine feet (wouldn’t we love to see the splits with that). Instead of a foot, each seven-jointed leg will have an “end effector” that is a sort of clamp that can grab on to things for a grip. It’s similar to the technology used on the Canadarm robotic arm, and also like Canadarm, there will be a vision system so that controllers know where to grasp.

NASA Expedition 35 astronaut Tom Marshburn (background) performs teleoperation activitites with Robonaut 2 aboard the International Space Station in 2013. Credit: NASA
NASA Expedition 35 astronaut Tom Marshburn (background) performs teleoperation activitites with Robonaut 2 aboard the International Space Station in 2013. Credit: NASA

The robot first arrived on station in February 2011 and (mostly while tied down) has done a roster of activities, such as shake hands with astronaut Dan Burbank in 2012 (a humanoid-human first in space), say hello to the world with sign language, and do functions such as turn knobs and flip switches. During Expedition 34/35 in 2012-13, astronaut Tom Marshburn even made Robonaut 2 catch a free-floating object through teleoperation.

Eventually NASA expects to use the robot outside the station, but more upgrades to Robonaut 2’s upper body will be needed first. The robot could then be used as a supplement to spacewalks, which are one of the most dangerous activities that humans do in space.

Closer to Earth, NASA says the technology has applications for items such as exoskeletons being developed to help people with physical disabilities.

Source: NASA

NASA's Robonaut 2 with "climbing legs" intended to let the robot rove around in the microgravity environment aboard the International Space Station. This version is being tested on the ground for eventual use in space. Credit: NASA
NASA’s Robonaut 2 with “climbing legs” intended to let the robot rove around in the microgravity environment aboard the International Space Station. This version is being tested on the ground for eventual use in space. Credit: NASA
R2A waving goodbye. Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center.   R2 is the first humanoid robot in space.  Credit: Joe Bibby
R2A waving goodbye. Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center. R2 is the first humanoid robot in space. Credit: Joe Bibby

Level Up! NASA’s Space Station Robot Getting ‘Climbing’ Legs

There was much excitement two years ago when the astronauts on space station unpackaged Robonaut 2 (or R2), which is supposed to help with simple tasks. Trouble was, the robot was basically anchored in place and had to be moved around for different tasks. Well, that’s about to change. R2 is getting some “climbing” legs.

After the legs are brought to station and installed — likely sometime early in the new year — Robonaut will be capable of doing tasks both inside and outside (well, outside once a few more unspecified upgrades are finished). This reduces the human risks during spacewalks and frees up the astronauts to do more complicated tasks, NASA said.

“Once the legs are attached to the R2 torso, the robot will have a fully extended leg span of 9 feet, giving it great flexibility for movement around the space station,” NASA stated.

“Each leg has seven joints and a device on what would be the feet called an end effector, which allow the robot to take advantage of handrails and sockets inside and outside the station. A vision system for the end effectors also will be used to verify and eventually automate each limb’s approach and grasp.”

By the way, end effectors were famously used on the Canadarm series of robotic arms that were originally used for grappling satellites. Who knew back in the 1970s that this could be extended to humanoid robots?

Source: NASA

Robo Trek Debuts … Robonaut 2 Unleashed and joins First Human-Robot Space Crew

Star Trek’s Data must be smiling.

One of his kind has finally made it to the High Frontier. The voyages of Robo Trek have begun !

Robonaut 2, or R2, was finally unleashed from his foam lined packing crate by ISS crewmembers Cady Coleman and Paolo Nespoli on March 15 and attached to a pedestal located inside its new home in the Destiny research module. R2 joins the crew of six human residents as an official member of the ISS crew. See the video above and photos below.

[/caption]

The fancy shipping crate goes by the acronym SLEEPR, which stands for Structural Launch Enclosure to Effectively Protect Robonaut. R2 had been packed inside since last summer.

Robonaut 2 is the first dexterous humanoid robot in space and was delivered to the International Space Station by Space Shuttle Discovery on STS-133.

”Robonaut is now onboard as the newest member of our crew. We are happy to have him onboard. It’s a real good opportunity to help understand the interface of humans and robotics here in space.” said Coleman. “We want to see what Robonaut can do. Congratulations to the team of engineers [at NASA Johnson Space center] who got him ready to fly.”

ISS Flight Engineer Cady Coleman and Robonaut 2

Discovery blasted off for her historic final mission on Feb. 24 and made history to the end by carrying the first joint Human-Robot crew to space.

The all veteran human crew of Discovery was led by Shuttle Commander Steve Lindsey. R2 and SLEEPR were loaded aboard the “Leonardo” storage and logistics module tucked inside the cargo bay of Discovery. Leonardo was berthed at the ISS on March 1 as a new and permanent addition to the pressurized habitable volume of the massive orbiting outpost.

“It feels great to be out of my SLEEPR, even if I can’t stretch out just yet. I can’t wait until I get to start doing some work!” tweeted R2.

The 300-pound R2 was jointly developed in a partnership between NASA and GM at a cost of about $2.5 million. It consists of a head and a torso with two arms and two hands. It was designed with exceptionally dexterous hands and can use the same tools as humans.

ISS Flight Engineer Paolo Nespoli and Robonaut 2

R2 will function as an astronaut’s assistant that can work shoulder to shoulder alongside humans and conduct real work, ranging from science experiments to maintenance chores. After further upgrades to accomplish tasks of growing complexity, R2 may one day venture outside the ISS to help spacewalking astronauts.

“It’s a dream come true to fly the robot to the ISS,” said Ron Diftler in an interview at the Kennedy Space Center. Diftler is the R2 project manager at NASA’s Johnson Space Center.

President Obama called the joint Discovery-ISS crew during the STS-133 mission and said he was eager to see R2 inside the ISS and urged the crew to unpack R2 as soon as possible.

“I understand you guys have a new crew member, this R2 robot,” Obama said. “I don’t know whether you guys are putting R2 to work, but he’s getting a lot of attention. That helps inspire some young people when it comes to science and technology.”

Commander Lindsey replied that R2 was still packed in the shipping crate – SLEEPR – and then joked that, “every once in a while we hear some scratching sounds from inside, maybe, you know, ‘let me out, let me out,’ we’re not sure.”

Robonaut 2 is free at last to meet his destiny in space and Voyage to the Stars.

“I don’t have a window in front of me, but maybe the crew will let me look out of the Cupola sometime,” R2 tweeted from the ISS.

Read my earlier Robonaut/STS-133 stories here, here, here and here.

This isn’t an animation or computer graphics.
I’m in space, says Robonaut 2 from inside the Destiny module at the ISS. Credit: NASA
Robonaut 2 unveiled at the ISS.
Robonaut 2, the dexterous humanoid astronaut helper, is pictured in the Destiny laboratory of the International Space Station.
Flight Engineer Oleg Skripochka and Robonaut 2 inside the ISS
R2A waving goodbye.
Robonaut R2A waving goodbye as Robonaut R2B launches into space aboard STS-133 from the Kernnedy Space Center. R2 is the first humanoid robot in space. Credit: Joe Bibby
R2A waving goodbye to twin brother R2B launching aboad Space Shuttle Discovery on Feb 14, 2011. Credit: Joe Bibby
Discovery launched on Feb. 14 with crew of six human astronauts and R2 Robonaut on STS-133 mission.
First joint Human – Robot crew. Credit: Ken Kremer
The twin brother of the R2 Robonaut and their NASA/GM creators at KSC.
Robonaut 2 and the NASA/GM team of scientists and engineers watched the launch of Space Shuttle Discovery and the first joint Human-Robot crew on the STS-133 mission on Feb. 24, 2011 from the Kennedy Space Center. Credit: Ken Kremer

NASA Robot and First Whole Sun Picture .. Coming on Super Bowl SUNday

[/caption]

What do NASA, Robots, the Sun and the NFL have in common ?

Well … its Super SUNday … for Super Bowl XLV on Feb. 6, 2011

The unlikely pairing of Football and Science face off head to head on Super Bowl SUNday. Millions of television viewers will see NASA’s Robonaut 2, or R2, share the the limelight with the Steelers and the Packers of the NFL. The twin brother of R2 is destined for the International Space Station (ISS) and will become the first humanoid robot in space. It will work side by side as an astronaut’s assistant aboard the space station.

The fearsome looking R2 is set to make a first ever special guest appearance during the FOX Networks Super Bowl pre-game show with FOX sports analyst Howie Long. The pre-game show will air starting at 2 p.m. EST on Feb. 6.

And there’s more.

The Sun from Stereo B. Credit: NASA
On Super SUNday Feb. 6, NASA will publish Humankinds first ever image of the ‘Entire Sun’ courtesy of NASA’s twin STEREO spacecraft. And given the stunningly cold and snowy weather in Dallas, the arrival of our Sun can’t come soon enough for the ice covered stadium and football fans. See photos above and below.

The two STEREO spacecraft will reach positions on opposite sides of the Sun on Sunday, Feb. 6 at about 7:30 p.m. in the evening, possibly coinciding with the Super Bowl half time show.

At opposition, the STEREO duo will observe the entire 360 degrees sphere of the Sun’s surface and atmosphere for the first time in the history of humankind.

The nearly identical twin brother of R2 is packed aboard Space Shuttle Discovery and awaiting an out of this world adventure from Launch Pad 39 A at NASA’s Kennedy Space Center (KSC) in Florida. Blast off of the first humanoid robot is currently slated for Feb. 24.

R2 is the most dextrously advanced humanoid robot in the world and the culmination of five decades of wide-ranging robotics research at NASA and General Motors (GM).

This newest generation of Robonauts are an engineering marvel and can accomplish real work with exceptionally dexterous hands and an opposable thumb. R2 will contribute to the assembly, maintenance and scientific output of the ISS

“R2 is the most sophisticated robot in the world,” says Rob Ambrose, Chief of NASA’s Johnson Space Center’s (JSC) Robotics Division.

“We hope R2 should help to motivate kids to study science and space,” Ron Diftler told me in an interview at KSC. Diftler is NASA’s R2 project manager at JSC.

Fearsome Robonaut 2 at NASA’s Kennedy Space Center prepares to meet the NFL’s best players at Super Bowl XLV on Feb 6, 2011. Credit: Ken Kremer

The amazingly dexterity of the jointed arms and hands enables R2 to use exactly the same tools as the astronauts and thereby eliminates the need for constructing specialized tools for the robots –saving valuable time, money and weight.

The robot is loaded with advanced technology including an optimized overlapping dual arm dexterous workspace, series elastic joint technology, extended finger and thumb travel, miniaturized 6-axis load cells, redundant force sensing, ultra-high speed joint controllers, extreme neck travel, and high resolution camera and IR systems.

R2 weighs some 300 pounds and was manufactured from nickel-plated carbon fiber and aluminum. It is equipped with two human like arms and two hands as well as four visible light cameras that provide stereo vision with twice the resolution of high definition TV.

“With R2 we will demonstrate ground breaking and innovative robotics technology which is beyond anything else out there and that will also have real world applications as GM works to build better, smarter and safer cars,” according to Susan Smyth, GM Director of Research and Development.

“Crash avoidance technology with advanced sensors is a prime example of robonaut technology that will be integrated into GM vehicles and manufacturing processes.”

A team of engineers and scientists from NASA and GM pooled resources in a joint endeavor to create Robonaut 2, the most dexterously advanced robot in history. The NASA/GM team is pictured here at the Kennedy Space Center. R2 will fly aboard Space Shuttle Discovery with the STS-133 crew of humans and become the first humanoid robot in space.
R2 will become an official ISS crew member. Credit: Ken Kremer

Robonaut 2 flight unit poses with the NASA/GM development team inside the Space Station Processing Facility at KSC in this 360 degree panorama from nasatech.net

I was fortunate to meet R2 and the Robonaut team at KSC. R2 is incredibly life like and imposing and I’ll never forget the chance to shake hands. Although its motions, sounds, illuminated hands and muscular chest gives the unmistakable impression of standing next to a lively and powerful 300 pound gorilla, it firmly but gently grasped my hand in friendship – unlike a Terminator.

So its going to make for a mighty match up some day between the fearsome looking R2 and the NFL players.

Well apparently, R2 and Howie will be making some predictions on which player will win the MVP award and a GM Chevrolet. Stay tuned.

So come back on SUNday Feb. 6 for NASA’s release of the first ever images of our entire Sun from the STEREO twins.

Clash of the Titans - R2 and NASA robotics engineer at football practice at KSC. Credit: Ken Kremer
Space Shuttle Discovery awaits launch from Pad 39 A at the Kennedy Space Center, Florida. Robonaut 2 is loaded inside the Leonardo storage module which will be permanently attached to the ISS by the STS-133 crew. Credit: Ken Kremer
On Super Bowl SUNday - Feb 6, 2011 - the two NASA STEREO spacecraft
will see the entire Sun for the first time! Credit: NASA.

Revolutionary Robonaut 2 Readied at Rocket Ranch

[/caption]

The payload for the next shuttle mission, STS-133 was on full display at Kennedy Space Center’s Space Station Processing Facility, including the mission’s “7th” crew member – Robonaut (or R2 as he is known to his friends). A media event on Aug. 12 showcased elements that Discovery is scheduled to lift to orbit on Nov. 1, 2010 at 4:33 p.m. EDT.


Jason Rhian with Robonaut. Photo credit: NASA/Jim Grossmann

Without a doubt the star of the show was R2 himself.  The mostly-white android looked every bit the science-fiction meets science-fact as the imagery we have all seen on television and the internet have made him out to be.  Robonaut 2 had originally been designed to only be a technology demonstrator, but engineers wanted to see how the system would operate in space and he was given a seat on the flight (albeit way in the back).  

Inside Leonardo, the PPM. Credit: Alan Walters (awaltersphoto.com) for Universe Today.

R2 was not the only horse at this rodeo however; NASA also had other flight hardware elements on display that will roar into orbit this fall.  One of these was the Permanent Multipurpose Module (PMM) that will be transported to the space station in Discovery’s payload bay (with R2 nestled inside). The PMM is in actuality the modified Leonardo multi-purpose logistics module (MPLM) and when the mission is completed the PMM will be left attached to the station.  

Space Shuttle Discovery will carry Space Exploration Technologies’ (SpaceX) DragonEye (DE) relative navigation sensor on this mission. It is expected that this sensor will be installed about half a month later than originally planned due to a failure in the laser rod that was detected during testing.  This item however was not on display at this event. 

STS-133 could possibly be Discovery’s final flight (it has been mentioned that if there is an STS-135 – that Discovery might fly that mission).  It will mark the 35th time that one of NASA’s orbiters has traveled to the orbiting laboratory.  The crew consists of Commander Steve Lindsey, Pilot Eric Boe and Mission Specialists Alvin Drew, Michael Barratt, Tim Kopra and Nicole Stott.

More images of R2 and Leonardo:

Robonaut meets astronaut. Credit: NASA