Don’t miss the final solar eclipse of the year: a striking ‘ring of fire’ annular solar eclipse.
If skies are clear, observers across a swath of the western United States, Mexico, and Central and South America are in for a treat this coming Saturday, October 14th, as the antumbral shadow of the Moon crosses the Earth in a fine ‘ring of fire’ annular solar eclipse.
Ready for the first solar eclipse of the year? This weekend sees one of the top draw astronomical events for 2020, with a ‘ring of fire’ annular solar eclipse spanning eastern Africa and southern Asia on Sunday, June 21st.
In Africa this week? The final solar eclipse of 2016 graces the continent on Thursday, September 1st. This eclipse is annular only, as the diminutive Moon fails to fully cover the disk of the Sun.
The 99.7 kilometer wide path crosses the African countries of Gabon, Republic of the Congo, Democratic Republic of the Congo, Tanzania, Mozambique and Madagascar. The antumbra (the ‘ring of fire path of the shadow annulus as viewed from Earth) touches down in the southern Atlantic at 7:20 Universal Time (UT) on September 1st, before racing across Africa and departing our fair planet over the Indian Ocean over four hours later at 10:55 UT. Partial phases for the eclipse will be visible across the African continent as far north as southern Morocco, Egypt and the southwestern portion of the Arabian peninsula.
Tales of the Saros
This eclipse is member 39 of 71 solar eclipses for saros 135, which runs from July 5th, 1331 to August 17th, 2593. This series finally produces its first total solar eclipse on March 29, 2359.
Annular eclipses occur when the Moon is too distant to cover the Sun as seen from the Earth. The Moon reaches apogee, or its most distant point from the Earth on September 6th, just five days after New and the September 1st eclipse.
How common (or rare) are solar eclipses, annular or total? It’s worth noting that as the 2017 total solar eclipse crossing the contiguous United States approaches, creationist websites are again promoting the idea that the supposed ‘perfection’ of solar eclipses is evidence for intelligent design. If solar eclipses are an example of a higher plan to the cosmos, they’re not a very good one… in fact, in our current epoch, partial eclipses, to include annulars, are much more prevalent. If, for example, the Moon’s orbit was aligned with the ecliptic, we’d see two eclipses – one lunar and and one solar – every month, a much rarer circumstance… a creator could have really used that to really get our attention. And Earth isn’t alone in hosting total solar eclipses: in our own solar system, you can make a brief visit to Jupiter’s large moons and also witness total solar eclipse perfection.
Unlike a total solar eclipse, proper eye protection must be worn throughout all stages of an annular eclipse. We witnessed annularity from the shores of Lake Erie back in 1994, and can attest that a few percent of the Sun is still surprisingly bright. The tireless purveyors of astronomy over at Astronomers Without Borders are working to distribute eclipse glasses to schools and students along the eclipse path.
Are you in the path of this week’s annular eclipse? Let us know, and send those images in to Universe Today on Flickr.
We’ll most likely see more than a few images of the eclipse from space as well. And no, we’re not talking about the cheesy composite that now makes its rounds during every eclipse… solar observing satellites to include the European Space Agency’s Proba-2 and the joint JAXA/NASA Hinode mission typically capture several successive eclipses as they observe the Sun from their vantage point in low Earth orbit.
At this stage, we only know of one webcast set to broadcast the eclipse live: the venerable Slooh website.
Let us know if you’re planning on setting up an ad hoc live webcast of the eclipse, even from outside the path of annularity.
And of course, the big question on every eclipse-chaser’s mind is: when’s the next one? Well, we’ve got a subtle penumbral eclipse on September 16th, 2016, and then the next solar eclipse is another annular favoring Argentina, Chile and the west coast of southern Africa on February 26th, 2017.
Don’t miss this week’s annular solar eclipse, either live online or in person, for a chance to marvel at a celestial phenomenon we all share in time and space.
The chase is on. On Sunday, November 3rd, the shadow of the Moon will cross the Earth for one last time in 2013. We recently wrote about the prospects for viewing this “hybrid” annular-total solar eclipse as it crosses the Atlantic and central Africa. Viewers from northern South America across the U.S. Eastern Seaboard up into the Canadian Maritimes will also be treated to a brilliant rising partial eclipse over the Atlantic at sunrise. Tickets are already in hand for many, as umbraphiles wing their way (cue Indiana Jones music) to dusty and exotic far off locales to stand briefly in the shadow of our Moon…
But what if it’s cloudy?
Once the bane of eclipse-chasers, you can now thwart our sometimes murky atmosphere by catching the solar eclipse online.
I remember our first experience with eclipse-chasing on the internet, trying to catch an eclipse broadcast on ye ole dial up modem from an internet café (remember internet cafes?) way back in the late 90s. This was pre-You Tube, pre-UStream. Needless to say, the tenuous connection afforded nary a frozen glimpse of the partially eclipsed Sun, and crashed all together at the onset of totality.
Fast forward to 2013, when ginormous data packets routinely fly around the globe.
True, this eclipse presents a challenge, as it crosses some pretty wild and unconnected terrain. But one standby that we can expect is the good people at Slooh, who have dispatched a broadcast team to the African nations of Gabon and Kenya:
As of this writing, Slooh looks to be going live at around 11:45 UT on Sunday November 3rd. This is 6:45 AM EST, which takes into account our “falling back” one hour to UT -5 hours on Sunday morning. Astronomer Brian Cox will be broadcasting live from Kenya, and the broadcast starts just over two hours prior to the first landfall of totality at just before 14:00 UT. From Gabon, Maximum totality will be a brief 1 minute and 5 seconds, and will dwindle to an even briefer 14 seconds over Lake Turkana in Kenya before ending as a brilliant sunset eclipse over Somalia and Ethiopia. A backup broadcast of the partial phases of the eclipse is also planned from Slooh’s home base site in the Canary Islands.
Another fascinating potential broadcast may come our way from the BRCK organization basing their observations of the eclipse from the shores of Lake Turkana in Kenya. Billed as “Your Backup Generator for the Internet,” BRCK’s mission is to bring broadband access internet to people in remote regions of the world. This weekend’s eclipse certainly qualifies. As of writing this on Halloween, October 31st, the BRCK team had gone into the field to “stress test” their webcasting capability onsite; follow them on Twitter as @brcknet for the latest updates. As of yet, there’s no embed for the broadcast, though we’ll be sure to drop it in if it surfaces!
There’s also some interesting science afoot during this eclipse as well. A recent press release out from Williams College notes that Field Memorial Professor of Astronomy and chair of the International Astronomical Union’s Working Group on Eclipses Jay Pasachoff will observe the eclipse, along with a student and tourist expedition from Gabon. A veteran eclipse chaser, Pasachoff will be working in concert with Dr. Vojtech Rusin of the Astronomical Institute of Slovakia, solar researchers Aris Voulgaris and Robert Lucas and William College students to study the ethereal solar corona. Satellite-based coronagraphs, such as the one employed by SOHO, can create an “artificial eclipse” of the Sun to study the corona, but also face the challenge of scattered light via a phenomenon known as Fresnel-diffraction. Pasachoff and team hope to combine their observations with those being routinely carried out by NASA, the European Space Agency and the Royal Observatory in Belgium to characterize the solar corona and improve our understanding of the space weather environment. Pasachoff’s expedition is being assisted via support from the South African Astronomical Observatory, Nommo Astronomia, the Gabon Astronomy Society and the Gabon Space Agency. Veteran eclipse chaser and historian Michael Zeiler (@EclipseMaps) has also joined up with Pasachoff’s group in Gabon.
In space, the NASA/JAXA joint solar observing Hinode spacecraft and ESA’s Sun watching Proba-2 will also catch several partial eclipses from their respective perches in low Earth orbit. Expect to see these pics in the days following Sunday’s eclipse.
We’ll be dropping in more broadcasts as they come to our attention this weekend here at Universe Today. Planning an ad-hoc webcast of the eclipse? Let us know in the comments below! Even if it’s just a brief view of the rising partially eclipsed Sun from the beach, its worth the effort. Just remember that you’ll need a fairly long focal length (in the range of 200mm or longer) and a proper solar filter for the Sun to appear like anything more than a washed out dot in the broadcast. And always run a test of your rig beforehand!
Good luck, happy eclipse chasing, and don’t forget to send those eclipse pics to Universe Today!
It’s almost upon us. The final eclipse of 2013 occurs this coming weekend on Sunday, November 3rd. This will be the fifth eclipse overall, and the second solar eclipse of 2013. This will also be the only eclipse this year that features a glimpse of totality.
This eclipse is of the rare hybrid variety— that is, it will be an annular eclipse along the very first 15 seconds of its track before transitioning to a total as the Moon’s shadow sweeps just close enough to the Earth to cover the disk of the Sun along the remainder of its track.
How rare are hybrid solar eclipse? Of the 11,898 solar eclipses listed over a 5,000 year span from 1999 BC to 3000 AD in Fred Espenak’s Five Millennium Catalog of Solar Eclipses, only 569, or 4.8% are hybrids.
Who can see this eclipse?
People from northern South America, across the U.S. Eastern Seaboard and up through the Canadian Maritimes will see a brief partial solar eclipse finishing up around 30 minutes after local sunrise. The brief annular “ring of fire” portion of the eclipse begins at sunrise just ~1,000 kilometres east of Jacksonville, Florida, as it races eastward across the Atlantic. See our timeline, below.
Nearly all of Africa and the southern Mediterranean region including Spain will see partial phases of the eclipse, while greatest totality occurs just off of the coast of Liberia and heads for first landfall on the African continent over Wonga Wongue Reserve in Gabon. At this point, the duration of totality will already have shrunk back down to 1 minute and 7 seconds. The shadow of the Moon will then cross central Africa, headed for a short but brilliant sunset total eclipse over Uganda, Ethiopia, Kenya and Somalia.
This particular eclipse part of saros series 143 and is member 23 of the 72 eclipses in the cycle. The first eclipse in this saros occurred on March 7th, 1617, and the last one will occur on April 23rd, 2897.
Saros 143 also has a checkered place in eclipse history. The last eclipse in this series crossed south eastern Asia on October 24th, 1995.
The first detailed picture of a solar eclipse was also taken of a saros 143 member on July 28, 1851. And one saros later, a total solar eclipse on August 7th, 1869 may have saved the butt of astronomer and explorer George Davidson while traversing the wilds of Alaska. And one more saros period later, Dmitri Mendeleev (he of the modern periodic table) observed the total solar eclipse of August 19th, 1887 from a balloon.
We’ve compiled a brief worldwide timeline for the November 3rd hybrid eclipse. Keep in mind, the shift back off of Daylight Saving Time occurs on the same morning as the eclipse for North America, putting the U.S. East Coast once again back to -5 hours off of Universal Time (UT):
10:04 UT: The partial phases of the eclipse begin.
11:05:17 UT: annular phases of the eclipse begin.
11:05:36 UT: The eclipse transitions from an annular to a total along its track.
12:46: The point of greatest eclipse, occurring off of the SW coast of Liberia along the coast of Africa. The path will be 57 kilometres wide at this point with a maximum duration for totality at 1 minute & 40 seconds.
14:27 UT: The total phases of the eclipse end.
15:28 UT: Partial phases end.
Remember that solar safety is paramount while observing an eclipse during all partial phases. This is especially critical, as millions of viewers along the U.S. East Coast are poised to catch the eclipse at sunrise over the Atlantic on Sunday. Use only glasses designed specifically for eclipse viewing or welder’s glass #14. One project headed by Astronomers Without Borders is also working to provide eclipse glasses to schools in Africa.
Projecting the Sun onto a wall or a piece of paper is also a safe method to observe the eclipse. Construction of a Sun Gun, a pinhole projector, or even using a spaghetti strainer or colander to project the partially eclipsed sun are all fun projects to try.
Shooting pictures of the rising eclipse is also possible using a DSLR. To capture the disk of the Sun plus an outline of the foreground, you’ll want to use a combination of low ISO 100 and a fast shutter speed (1/4000 or faster) and a zoom lens of at least 200mm or greater. Keep in mind, DO NOT look at the Sun through the camera’s view finder— simply set the focus to infinity and aim via projection. It’s worth practicing your technique a morning or two prior to the main event!
As the partial phase of the eclipse progresses, keep an eye out for “tiny crescents” that may litter the ground. These are caused by gaps in things such as leaves, latticework, etc that may act as natural “pinhole projectors”. Those lucky enough to stand in the path of totality may snare a look at shadow bands sweeping across the landscape as totality approaches, as well as catch a brief glimpse of Baily’s Beads and the pearly white corona of the Sun.
Totality will last less than a minute across most of central Africa, giving viewers a very hurried view before partial phases commence once more. Venus will be easily visible at magnitude -4.4 just 47 degrees east of the Sun. Unfortunately, prospects aren’t great for air or seaborne viewers in the mid-Atlantic to catch sight of comet ISON during the frenzied moments of totality, which will sit 50 degrees from the Sun between magnitude +7 & +8.
Weather prospects are an all-important consideration when planning for an eclipse. Jay Anderson maintains an outstanding site with projections tailor-made for each eclipse. For the U.S. East Coast, clear skies right down to the crucial eastern horizon will be key!
A recent surge in piracy off of the West Coast of Africa may also factor into travel considerations for eclipse chasers. You can actually monitor such activities on the high seas now in near real time. Perhaps one could take a page from Mark Twain’s A Connecticut Yankee in King Arthur’s Court, and impress any would-be-brigands with the glory of an impending solar eclipse…
Unfortunately, the International Space Station will have an orbit nearly perpendicular to the Earth-Moon-Sun syzygy, and won’t lend itself to any great prospects of a transit during the partial phases of the eclipse. ESA’s Proba-2 and JAXA’s Hinode will, however, see several partial eclipses from orbit:
Sunspot activity has also been on the upswing as of late, making for a photogenic Sun heading into the partial phases of the eclipse. A well-placed, naked eye Coronal Mass Ejection on the solar limb also isn’t out of the question. Eclipse historian and expert Michael Zeiler notes that a CME last occurred during a total solar eclipse way back in 1860.
Totality for this eclipse passes over some wild and largely wifi free areas; few plans to broadcast the eclipse live have surfaced thus far.
Slooh plans a broadcast, as did a proposed Indiegogo project whose current status is unclear. BRCK also plans to broadcast the eclipse live from the shores of Lake Turkana, Kenya. Got plans to webcast even the partial phases of the eclipse? Let us know!
And speaking of eclipse chasing, we plan on heading to the Florida Space Coast Sunday morning at o’dark thirty to nab the partial sunrise eclipse over the Atlantic.
And as always, the question posed immediately after totality is: when’s the next one? Well, the next annular eclipse graces Australia on April 29th, 2014. The U.S. will also see a partial solar eclipse on October 23rd next year… but totality will not touch the surface of our fair planet until a high Arctic eclipse on March 20th, 2015.
Good luck, clear skies, and safe journeys to all who are chasing after this one near and far, and don’t forget to post those pics to Universe Today’s Flickr page!
-See more of Michael Zeiler’s work at Eclipse Maps.