Weekly Space Hangout – February 10, 2017: Weekend Eclipse, Occultation and Comet 45P!

Host: Fraser Cain (@fcain)

Guests:

Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Dave Dickinson (www.astroguyz.com / @astroguyz)

Their stories this week:

Comet 45P Flies Past Earth

A new “kind” of black hole

A Penumbral Lunar Eclipse

The Moon Occults Regulus

Mars didn’t have enough CO2 to sustain liquid water

ISS is getting a commercial airlock

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

Mars Meets the King of the Beasts

Mars and Regulus are already close. This photo was taken this morning (Sept. 21) about an hour 10 minutes before sunrise. Credit: Bob King

I was up before dawn today hoping to find the returning comet 205P/Giacobini and a faint new supernova in the galaxy IC 1776 in Pisces. I was fortunate to see them both. But the morning held a pleasant surprise I hadn’t anticipated. Venus rose brilliantly in the east followed by the much dimmer planet Mars some 10° to its lower left. And there, not more than a couple degrees below Mars, shone Leo’s brightest star, Regulus. At first glance both appeared about equally bright, but looking closer, it was clear that Regulus, at magnitude +1.3, bested Mars by nearly half a magnitude. What was especially appealing was the color contrast between the two with Mars’ dusty, rusty surface so different from the pure white radiance of Regulus.

On Friday morning September 25, Mars and Regulus will be just 0.8 degrees apart in the eastern sky below brilliant Venus at dawn. They'll be nearly as close Thursday morning. Source: Stellarium
On Friday morning September 25, Mars and Regulus will be just 0.8 degrees apart in the eastern sky below brilliant Venus at dawn. They’ll be nearly as close Thursday morning. Source: Stellarium

While star and planet are both close enough to catch the eye, they’re headed for an excellent conjunction Thursday and Friday mornings, September 24 and 25. The actual time of closest approach, when star and planet will be separated by just 0.8°, occurs around 11 p.m. CDT — before Mars rises for skywatchers in the Americas and Canada, but about perfect for European and African observers.

Just the same, everyone around the planet will see them less than a degree apart low in the eastern sky about 90 minutes to an hour before sunrise on those dates. Joining the scene will be Venus, now spectacularly bright against the deep blue, early dawn, and Jupiter, bringing up the rear further lower down in Leo’s tail.


Regulus is a main sequence star like the Sun but hotter. It spins so fast that it’s stretched into an oblate spheroid 4.3 times the diameter of the Sun.

Regulus, Latin for “little king”, may have received that name because it’s the brightest star in the Leo the Lion, king of the beasts. The ancient Greeks knew it by the same name, Basiliscos, as did the Babylonians before them who called it Lugal (king). Regulus is the only 1st magnitude star to sit almost directly on the ecliptic, the path followed by the Moon, Sun and planets through the sky. That means it gets regular visitors. Mars this week; Venus and the crescent Moon both on October 8. Few bright stars are as welcoming of unannounced guests.

I encourage beginning and advanced astrophotographers alike to capture the Regulus-Mars conjunction using a tripod-mounted camera.  Just find an attractive setting and make a series of exposures at ISO 800 with a standard 35mm lens. Click here to find out when the Sun rises, so you’ll know what time to back up from to see the event. Now that fall brings much later sunrises, it’s not so hard anymore to catch dawn sky offerings.

It’s also a delight to see the Red Planet again, which will come to a close opposition in the constellation Scorpius next May. Let the fun begin!

Surprise! Asteroid Hosts A Two-Ring Circus Above Its Surface

Artist's impression of what the rings of the asteroid Chariklo would look like from the small body's surface. The rings' discovery was a first for an asteroid. Credit: ESO/L. Calçada/Nick Risinger (skysurvey.org)

Rings are a tough phenomenon to spot. As late as 1977, astronomers thought that the only thing in the solar system with rings was the planet Saturn. Now, we can add the first asteroid to the list of ringed bodies nearby us. The asteroid 10199 Chariklo hosts two rings, perhaps due to a collision that caused a chain of debris circling its tiny surface.

Besides the 250-kilometer (155-mile) Chariklo, the only other ringed bodies known to us so far are (in order of discovery) Saturn, Uranus, Jupiter and Neptune.

“We weren’t looking for a ring and didn’t think small bodies like Chariklo had them at all, so the discovery — and the amazing amount of detail we saw in the system — came as a complete surprise,” stated Felipe Braga-Ribas  of the National Observatory (Observatório Nacional) in Brazil, who led the paper about the discovery.

Illustration of how Asteroid Chariklo may have gotten its rings. Copyright: Estevan Guzman for Universe Today.
Illustration of how Asteroid Chariklo may have gotten its rings. Copyright: Estevan Guzman for Universe Today.

The rings came to light, so to speak, when astronomers watched Chariklo passing in front of the star UCAC4 248-108672 on June 3, 2013 from seven locations in South America. While watching, they saw two dips in the star’s apparent brightness just before and after the occultation. Better yet, with seven sites watching, researchers could compare the timing to figure out more about the orientation, shape, width and more about the rings.

The observations revealed what is likely a 12.4-mile (20-kilometer)-wide ring system that is about 1,000 times closer to the asteroid than Earth is to the moon. What’s more, astronomers suspect there could be a moon lying amidst the asteroid’s ring debris.

Artist's impression of two rings discovered around the asteroid Chariklo. It was the first such discovery made for an asteroid. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
Artist’s impression of two rings discovered around the asteroid Chariklo. It was the first such discovery made for an asteroid. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

If these rings are the leftovers of a collision as astronomers suspect, this would give fodder to the idea that moons (such as our own moon) come to be from collisions of smaller bits of material. This is also a theory for how planets came to be around stars.

The rings haven’t been named officially yet, but the astronomers are nicknaming them Oiapoque and Chuí after two rivers near the northern and southern ends of Brazil.

Because these occultation events are so rare and can show us more about asteroids, astronomers pay attention when they occur. Part of the Eastern Seabord enjoyed a more recent asteroid-star occultation on March 20.

The original paper, “A ring system detected around the Centaur (10199) Chariklo”, will soon be available on the Nature website.

Source: European Southern Observatory

Artist's impression of rings around the asteroid Chariklo. This was the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)
Artist’s impression of rings around the asteroid Chariklo. This was the first asteroid where rings were discovered. Credit: ESO/L. Calçada/M. Kornmesser/Nick Risinger (skysurvey.org)

Clouds May Scotch Tomorrow’s Rare Erigone-Regulus Occultation

The bright star Regulus will disappear for observers living along the path between the red lines. The disappearance is longest - up to 14 seconds - along the center green line. Credit: Google Maps / IOTA

North America’s brightest predicted asteroid occultation may be one-upped by a much bigger occultation – a solid blanket of clouds. Asteroid 163 Erigone will cover or occult the bright star Regulus shortly after 2 a.m. Eastern Daylight Time tomorrow morning March 20. Observers along a 45-mile-wide (73-km) belt stretching from the wilderness of Nunavut to the salty seas of Bermuda could see the star vanish for up to 14 seconds. Provided they can find a hole in the clouds.

ggggggg
National forecast map for 8 p.m. EDT tonight March 19. A low pressure region is expected to bring rain and snow to the Northeast and Ontario today and overnight with clearing skies later tomorrow. Click for latest New York City weather forecast. Credit: NOAA

Overcast skies with a mix of rain or snow are predicted along virtually the entire track from the tiny berg of Cochrane in northern Ontario south through New York City, Connecticut and New Jersey. A sluggish cold front isn’t expected to clear skies until … no surprise here … after the event is over.

Bermuda, perhaps the best place to watch the occultation, crosses the eastern edge of the asteroid's shadow. The red line marks
Bermuda, perhaps the best place to watch the occultation, crosses the eastern edge (blue line) of the asteroid’s shadow. The red line marks one sigma of uncertainty in the shadow edge. Credit: Google Maps/IOTA

But there is one place where maybe, just maybe, the clouds may part to let Erigone do its job. Bermuda.  The Bermuda Weather Service forecast calls for highs in the low 70s mid-week, but that balmy air may come packaged with a partly to mostly cloudy sky at the time of the occultation. A few determined observers are on their way there right now, hoping for better weather. In case the islands are socked in, some plan to rent planes to rise above the low-lying clouds typical this time of year and revel in the shadow of an asteroid. Even if clear, Bermuda lies near the eastern edge of the path. Any occultation there will be brief.

Illustration showing asteroid 163 Erigone about to cover Leo’s brightest star Regulus around 2:07 Eastern Daylight Time Thursday morning March 20, 2014. As the asteroid’s shadow passes over the ground, observers will see Regulus disappear for up to 14 seconds. Illustration: Bob King with help from photos by the ESO/NASA -
Illustration showing asteroid 163 Erigone about to cover Leo’s brightest star Regulus around 2:07 Eastern Daylight Time Thursday morning March 20, 2014. As the asteroid’s shadow passes over the ground, observers will see Regulus briefly disappear. Illustration: Bob King with ESO/NASA images

Yes, there will be more occultations, but bright ones that the public can enjoy with the naked eye are rare.

Skywatchers are nothing if not hopeful. We believe in the sucker hole, the name given to rogue clearings in an otherwise overcast sky. We are patient and steadfast when it comes to glimpsing the rarest of the rare. I know this because my friends and I have stood outside on winter mornings staring at the western sky, waiting for clouds to peel back that we might glimpse a Martian dust storm or new comet.

To find Regulus, face southwest shortly before 2 a.m. The star will be about 40 degrees high (four ‘fists’ held at arm’s length against the sky). Brilliant Jupiter shines well to its lower right. You may also notice a ‘coathangar’ or ‘backwards question mark’ shape of stars above Regulus called the Sickle of Leo. Stellarium
If it does clear tomorrow, face southwest shortly before 2 a.m. to find Leo’s brightest star Regulus. The star will be about 40 degrees high (four ‘fists’ held at arm’s length against the sky). Above is the the Sickle of Leo, shaped like a backwards question mark. Brilliant Jupiter shines well to its lower right. Stellarium

If there’s an astronomer’s credo, it’s this: “The sky might clear yet!” The latest weather word (9 a.m. March 19) for U.S. and Canadian observers indicates thinner clouds along the southern end of the track in New Jersey. Many of us considered driving to the event but changed our minds because of work, worries about weather and other commitments. Assuming the credo holds true, you’ll be able to watch Regulus disappear live from the comfort of your home thanks to the efforts of several observers planning to stream the event on the Web.

Here’s a list of streamers so far:

Brad Timerson plans to go live with audio at 2 a.m. at a rest area along I-90 just west of Syracuse, NY.

Ted Blank on UStream

Steve Preston will broadcast an image of his camcorder screen

Vagelis Tsamis will try to broadcast from Canada

* SLOOH

As always, everything depends on the weather. Let’s hope Mother Nature loses focus and lets a little clear sky slip by.

Weekly SkyWatcher’s Forecast: April 9-15, 2012

M95 - Credit: NOAO/AURA/NSF

[/caption]Greetings, fellow SkyWatchers! It’s shaping up to be a great week to enjoy astronomy. For both hemispheres, the Virginid Meteor shower is underway and its peak occurs late Monday night / early Tuesday morning. Need more celestial fireworks? Then keep looking up as the “April Fireballs” will be visiting, with their peak beginning about a week from today and lasting for 24 days. Even if you only catch one of these bright travelers as they sparkle across the starry sky, it will make your night! But hang on, there will be plenty to explore. Bright stars and bright planets are featured – as well as some of the season’s best galaxies. Keep your telescope out and don’t get spooked, because the “Ghost of Jupiter” will be a challenge object! If you want to know more about astonomy history, and what you can see with just your eyes and your optics, then meet me in the back yard…

Monday, April 9 – Tonight let’s take a journey towards the 25th brightest star in the night sky – 1.3 magnitude, Alpha Leonis. Regulus, known as “The Little King,” is the brightest star in Leo. At 77 light-years away, this star is considered a “dwarf” despite shining with a visible light almost 150 times that of Sol. The orange-red giant Arcturus and the blue white “dwarf” Regulus both share a common absolute magnitude very close to 0. The reason the two stars shine with a similar intrinsic brightness – despite widely different physical sizes – is Regulus’ photosphere is more than twice as hot (12,000 C) as Arcturus. While observing Regulus, look for a distant companion of magnitude 8.5. Normally low powers would best concentrate the companion’s light, but try a variety of magnifications to help improve contrast. For those with large aperture scopes, look for a 13.1 magnitude “companion’s companion” a little more than 2 arc seconds away!

Tuesday, April 10 – Be sure to get up before dawn to enjoy the Virginid meteor shower. The radiant point will be near Gamma in the bowl of Virgo. The fall rate of 20 per hour is above average for meteor showers, and with the Moon partially out of the equation this morning, you’re in for a treat!

Tonight, let’s have a look at Arcturus – a star whose distance from the Earth (10 parsecs) and radial velocity (less than 200 meters per second) can almost be considered a benchmark. By skydark you will see 0.2 magnitude, Arcturus – the brightest star in Bootes and 4th brightest star in the night sky – some 30 degrees above the eastern horizon. Apparent to the eye is Arcturus’ orange color. Because a star’s intrinsic luminosity relates to its apparent brightness and distance, Arcturus’ absolute magnitude is almost precisely the same as its apparent magnitude. Just because Arcturus’ radial velocity is nearly zero doesn’t mean it isn’t on the move relative to our Sun. Arcturus is now almost as close as it will ever get and its large proper motion – perpendicular to our line of sight – exceeds 125 kilometers per second. Every 100 years Arcturus moves almost 1 degree across the sky!

Since you’ve looked at a red star, why not look at a red planet before you call it a night? Mars is still making a wonderful apparition. Have you noticed it dimming even more? Right now it should be about magnitude -0.5. You may have noticed something else about Mars in the eyepiece, too… It’s getting smaller!

Wednesday, April 11 – Today is the birthday of William Wallace Campbell. Born in 1862, Campbell went on to become the leader of stellar motion and radial velocity studies. He was the director of Lick Observatory from 1901 to 1930, and also served as president of the University of California and the National Academy of Sciences. Also born on this day – but in 1901 – was Donald H. Menzel – assistant astronomer at Lick Observatory. Menzel became Director of Harvard Observatory, an expert on the Sun’s coronosphere and held a genuine belief in the extraterrestrial nature of UFOs. Today in 1960, the first radio search for extraterrestrial civilizations was started by Frank Drake (Project Ozma). In 1986, Halley’s Comet closed within 65 million kilometers of the Earth – as close as it would get.

Tonight, why don’t we honor Campbell’s work as we try taking a look at a variable ourselves? RT (star 48) Aurigae is a bright cephid that is located roughly halfway between Epsilon Geminorum and Theta Aurigae. This perfect example of a pulsating star follows a precise timetable of 3.728 days and fluxes by close to one magnitude.

Thursday, April 12 – Today in 1961, Yuri Gagarin made one full orbit of the Earth aboard Vostok 1, while also becoming the first human in space. Also today (in 1981) Columbia became the first Space Shuttle to launch.

Break out the telescope tonight and launch your way towards Iota Cancri – a fine wide disparate double of magnitudes 4.0 and 6.6 separated by some 30 arc seconds. This true binary is so distant from one another that they take over 60,000 years to complete a single orbit around their common center of gravity! Located slightly less than a fist’s width due north of M44, this pair is about 300 light years distant. Both stars shine with a light considerably brighter than our Sun and observers may note a subtle gold and pale blue color contrast between them.

Friday, April 13 – With no early evening Moon to contend with, this is a fine opportunity to have a look at a group of galaxies between Leo’s paws. Start at Regulus and look due east toward Iota Leonis. Halfway between the two (less than a fist from Regulus) and two finger-widths northeast of Rho Leonis, you’ll encounter Messier Galaxies M95 (Right Ascension: 10 : 44.0 – Declination: +11 : 42) and M96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49) – both within the same low power field of view. At magnitude 9.2, the brighter – and slightly rounder – M96 lies northeast of 9.7 magnitude, M95. Pierre Mechain discovered both galaxies on March 20, 1781 and Messier added them to his catalog 4 days later. These two galaxies are two of the brightest members of the Leo I galaxy group located some 38 million light-years away.

To see another Messier member of the Leo I group, center on M96 and shift the galaxy south. From the north side of the low power field, the 9.3 magnitude galaxy M105 (Right Ascension: 10 : 47.8 – Declination: +12 : 35), nearby 10th magnitude NGC 3384 (Right Ascension: 10 : 48.3 – Declination: +12 : 38), and 12th magnitude NGC 3389 (Right Ascension: 10 : 48.5 – Declination: +12 : 32) will come into view. M105 was discovered by Mechain on the night Messier catalogued M95 and 96 but was not formally added to Messier’s catalog. Based on Mechain’s observing notes, Helen Sawyer Hogg added it to Messier’s list in 1947 – along with galaxy M106 and globular cluster M107. Mechain failed to notice M105’s bright neighboring galaxy – NGC 3384. NGC 3384 is actually slightly brighter than the faintest Messier discovered – M91.

We’re not done yet! If you center on M105 and shift due north less than a degree and a half you will encounter 10th magnitude NGC 3377 (Right Ascension: 10 : 47.7 – Declination: +13 : 59) – a small elongated galaxy with a stellar core. There are a dozen galaxies visible to moderate amateur instruments (through magnitude 12) in the Leo I region of the sky!

Saturday, April 14 – Today is the birthday of Christian Huygens. Born in 1629, the Dutch scientist went on to become one of the leaders in his field during the 17th century. Among his achievements were promoting the wave theory of light, patenting the pendulum clock, and improving the optics of telescopes by inventing a new type eyepiece and reducing false color through increasing the focal length of refractor telescopes. Huygens was the first to discover Saturn’s rings and largest satellite – Titan. Of the rings, Huygens said, “Saturn: encircled by a ring, thin and flat, nowhere touching, and inclined to the ecliptic.”

Wanna’ check Saturn out? It will be rising in the constellation of Virgo not long after the sky begins to turn dark. If you’re not sure of which “star” it is, just wait for awhile and you’ll find it about a fistwidth northwest of bright, blue/white Spica. Be sure to check out the ring system! Right now they have a very nice southern tilt which will allow you a great view of the shadow of the planet on the rings – and the shadow of the rings on the planet. If the atmosphere will allow, power up! Something you may never have thought of looking for could be happening… Can you see the planet’s edge through the Cassini division? Be sure to look for wide orbiting Titan and some of Saturn’s smaller moons slipping around the ring edges.

Tonight our challenge is also planetary – but it’s the planetary nebula – the “Ghost of Jupiter”. Begin by identifying the constellation of Hydra. Starting at Alpha Hydrae, head east about a fist’s width to find Lambda within a field of nearby fainter stars. Continue less than a fist southeast and locate Mu. You’ll find the “Ghost of Jupiter” (NGC 3242) lurking in the dark less than a finger-width due south. At magnitude 9, the NGC 3242 (Right Ascension: 10 : 24.8 – Declination: -18 : 38) gives a strikingly blue-green appearance in even small scopes – despite being more than 1500 light years away.

Sunday, April 15 – Tonight keep a watch for the “April Fireballs.” This unusual name has been given to what may be a branch of the complex Virginid stream which began earlier in the week. The absolute radiant of the stream is unclear, but most of its long tails will point back toward southeastern skies. These bright bolides can possibly arrive in a flurry – depending on how much Jupiter’s gravity has perturbed the meteoroid stream. Even if you only see one tonight, keep a watch in the days ahead. The time for “April Fireballs” lasts for two weeks. Just seeing one of these brilliant streaks will put a smile on your face!

And if you can’t take your eyes off Leo, then there’s good reason. The combination of Theta Leonis, Regulus and Mars certainly calls attention to itself!

While we’re out, let’s journey this evening towards another lovely multiple system as we explore Beta Monocerotis. Located about a fist width northwest of Sirius, Beta is one of the finest true triple systems for the small telescope. At low power, the 450 light year distant white primary will show the blue B and C stars to the southeast. If skies are stable, up the magnification to split the E/W oriented pair. All three stars are within a magnitude of each other and make Beta one of the finest sights for late winter skies.

If you hadn’t noticed, Saturn is at opposition tonight, meaning it will be viewable from dusk until dawn. Be sure to check out the “Ring King” – but wait until it has risen well above the lower atmosphere disturbance for a superior view!

Until next week, I wish you clear and steady skies!