Do I Believe in UFOs?

Whenever I do a new livestream on Instagram (hint hint, @universetoday on Instagram), it’s generally with an audience that doesn’t have a lot of experience with my work here on Universe Today or YouTube.

They’re enthusiastic about space, but they haven’t been exposed to a lot of the modern ideas about astrobiology and the search for extraterrestrials. They have, however, seen a lot of TV and movies.

Continue reading “Do I Believe in UFOs?”

Is That a Big Crater on Pluto? Pyramidal Mountain Found on Ceres

You’re probably as eager as I am for new images of Pluto and Ceres as both New Horizons and Dawn push ever closer to their respective little worlds. Recent photos, of which there are only a few, reveal some wild new features including what appears to a large crater on Pluto.

The latest photo of Pluto (lower left) and its largest moon Charon taken on June 29. A large possible crater-like feature is visible at lower right. Charon shows intriguing dark markings. Pluto's diameter is  1,471 miles (700 miles smaller than Earth's Moon); Charon is 750 miles across. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The latest photo of Pluto (lower left) and its largest moon Charon taken on June 29. A large possible crater-like feature is visible at lower right. Charon shows intriguing dark markings. Pluto’s diameter is 1,471 miles (700 miles smaller than Earth’s Moon); Charon is 750 miles across. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In the end, this apparent large impact might only be a contrast effect or worse, an artifact of over-processing, but there’s no denying its strong resemblance to foreshortened, shadow-filled craters seen on the Moon and other moons. It’s also encouraging that an earlier photo from June 27 shows the same feature. But the “crater” is just so … big! Its size seems disproportionate to the Pluto’s globe and recalls Saturn’s 246-mile-wide moon Mimas with its 81-mile-wide crater Herschel.

Pluto (right) and Charon, with its unusual dark north polar cap or “anti-cap” in a photo taken by New Horizons’ long-range camera on June 19, 2015. Pluto’s 1,471 miles in diameter; Charon’s half that size. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Pluto (right) and Charon, showing an unusual dark north polar cap or “anti-cap” in a photo taken by New Horizons’ long-range camera on June 19, 2015. The two were about 20 million miles away at the time. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Astronomers speculate the impact that gouged out Herschel came perilously close to shattering the moon to pieces. If it does turn out to be an crater, Pluto’s surface opposite the impact will likely show many fractures. Not to be outdone, the dwarf planet’s largest moon, Charon, is starting to show a personality of its own with a prominent dark north polar cap.

Since polar caps are normally bright, icy features, some have referred to this one as an “anti-polar cap”. Speaking of ice, the bright rim around Pluto in the photo above may be nitrogen frost condensing out of Pluto’s scant atmosphere as it slowly recedes from the Sun. Think how cold it must have to get for nitrogen to freeze out. How about -346° F (-210° C)! For new images of the Pluto system, be sure to check the New Horizons LORRI gallery page.

Dawn took this photo of an intriguing pyramidal mountain on Ceres on June  14 from an altitude of 2,700 miles. It rises 3 miles above a relatively smooth surface. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dawn took this photo of an intriguing pyramidal mountain (top center) on Ceres on June 14 from an altitude of 2,700 miles. It rises 3 miles above a relatively smooth surface. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Closer to home, new photos of Ceres show a peculiar, pyramid-shaped mountain towering 3 miles (5 km) high from a relatively smooth region between two large craters. Mountains poking from crater floors aren’t unusual. They’re tossed up after the crust later rebounds after a large impact. What makes this one unusual is the lack of an associated crater. Moreover, the mountain’s pale hue could indicate it’s younger than the surrounding landscape. As far as we can tell, it’s the only tall mountain on the face of the dwarf planet.

Another more overhead view of the mountain (right of center) taken by NASA's Dawn probe on June 6. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Another more overhead view of the mountain (right of center) taken by NASA’s Dawn probe on June 6. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Cropped version of the photo above. Notice the striations on the mountainside possibly from landslides. Credit:
Cropped version of the photo above. Notice the striations on the mountainside possibly from landslides. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The Dawn team also photographed that cluster of white spots again, this time with a very shot exposure in to eke out more details. What do you think? If you’re as interested in asteroids as I am, Italian astrophysicist Gianluca Masi, a frequent photo contributor to Universe Today, will host a special live Asteroid Day event today starting at 6 p.m. CDT (23:00 UT). Masi will review near-Earth asteroids, explain discovery techniques and observe several in real time.

The Dawn team greatly underexposed Ceres in order to tease out more details from the white spot cluster in this image made on June 15 from 2,700 miles altitude. I've lightened the limb of Ceres, so you can see the context better. Credit:
The Dawn team greatly underexposed Ceres in order to tease out more details from the white spot cluster in this image made on June 15 from 2,700 miles altitude. I’ve lightened the limb of Ceres to provide context. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn photographed the large crater at left along with an interesting chain of craters and possible fault or collapse features. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Dawn photographed the large crater at left along with an interesting chain of craters and possible fault or collapse structures. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Rosetta’s View of a Comet’s “Great Divide”

The latest image to be revealed of comet 67P/Churyumov-Gerasimenko comes from October 27, 2014, before the Philae lander even departed for its surface. Above we get a view of a dramatically-shadowed cliff separating two regions on 67P, the high, smooth plateaus of Babi and the boulder-strewn, slumped valley of Aten. Both are located on the larger lobe of the comet, while parts of the Ma’at region on the smaller “head” lobe can be seen in the distance at upper left. (You can see a regional map of comet 67P here.)

The image scale is about 75 cm (2.4 feet) per pixel and the entire image spans 770 meters across – about half a mile. Based on that, the cliff is easily over 190 meters (630 feet) high!

Here's a diagram of the image above in context with the entire comet. (ESA)
Here’s a diagram of the image above in context with the entire comet. (ESA)

It’s thought that the morphological differences in the Babi and Aten regions – in both texture and altitude – are the result of a massive loss of material from Aten at some point in the comet’s history. According to the entry on the Rosetta blog, the entire volume of the Aten “scoop” is equivalent to about 50 Great Pyramids of Giza… a fitting analogy considering the choice to name features on 67P with an ancient Egyptian theme.

See Comet 67P’s Enormous “Cheops” Boulder

The image above is one of a slew of NavCam images that will be released at the end of the month on ESA’s Archive Browser, captured by Rosetta after establishing orbit around 67P.

Source: ESA’s Rosetta blog

NavCam image of 67P/C-G acquired on May 12, 2015. The elongated depression at the center of the illuminated region is Aten. ( ESA/Rosetta/NavCam – CC BY-SA IGO 3.0)
NavCam image of 67P/C-G acquired on May 12, 2015. The elongated depression at the center of the illuminated region is Aten. ( ESA/Rosetta/NavCam – CC BY-SA IGO 3.0)