Super Star Smashes into the Record Books.

Pulses from neutron star (rear) are slowed as they pass near foreground white dwarf. This effect allowed astronomers to measure masses of the system. CREDIT: Bill Saxton, NRAO/AUI/NSF


The discovery of a super massive neutron star has thrown our understanding of stellar evolution into turmoil. The new star, called PSR J1614-2230 contains twice the mass of the Sun but compressed down into a star that is smaller than the Earth (you could fit over a million Earth’s inside the Sun by comparison). It is estimated a thimbleful of material from the star could weigh more than 500 million tons — that equates to about a million airliners. The study has cast serious doubt over how matter reacts under extreme densities.

The study by a team of astronomers using the National Radio Astronomy Observatory in New Mexico focussed its attention on the star which is about 3,000 light years away (the distance light can travel in 3,000 years at a speed of 300,000 km per second). The stellar corpse whose life ended long ago is now rotating at an incredible speed, completing 317 rotations every second. Its emitting an intense beam of energy from its polar regions which just happens to point in the direction of us here on Earth. We can detect this radiation beam as it flashes on and off like a celestial lighthouse. This type of neutron star is classed a pulsar.

Artist impression of Pulsar
Artist impression of Pulsar

Rather fortuitously, the star is part of a binary star system and is orbited by a white dwarf star which completes one orbit in just nine days. Its through the measurements of the interaction of the two which gave astronomers the clue as to the pulsar’s mass. The orbit of the white dwarf takes it between the beam of radiation and us here on Earth so that the energy from the beam has to pass close by the companion star. By measuring the delay in the beam’s arrival caused by distortion of space-time in the proximity of the white dwarf, scientists can determine the mass of both objects. Its an effect called the Shapiro Delay and its simply luck that the orientation of the stars to the Earth allows the effect to be measured.

Dave Finley, Public Information Officer from NRAO told Universe Today ‘Pulsars are neutron stars, whose radiation beams emerge from the poles and sweep across the Earth.  The orientation of the poles (and thus of the beams) is a matter of chance. We just got very lucky with this system.’

The discovery which was made possible by the new ‘Green Bank Ultimate Pulsar Processing Instrument (GUPPI) was able to measure the pulses from the pulsar with incredible accuracy and thus come to the conclusion that the star weighed in at a hefty two times the mass of the Sun. Current theories suggested a mass of around one and a half solar masses were possible but this new discovery changes the understanding of the composition of such stars, even to the subatomic level.

Neutron stars or pulsars are extreme objects at the very edges of the conditions that matter can exist. They really test our knowledge of the physical Universe and slowly but surely, through dedicated work of teams of astronomers, we are not only learning more about the stars above our heads but more and more about matter in the Universe in which we live.

Mark Thompson is a writer and the astronomy presenter on the BBC One Show. See his website, The People’s Astronomer, and you can follow him on Twitter, @PeoplesAstro

Source: NRAO