Comet Encke Reemerges in the Dawn Sky

Comet 2P Encke glides through Pisces on February 16th. Image credit and copyright: Hisayoshi Kato.

Miss out on Comet 45/P Honda-Mrkos-Padadušáková last month? We’ll admit, it was fairly underwhelming in binoculars… but fear not, there are several other binocular comets in the pipeline for 2017.

Maybe you managed to catch sight of periodic Comet 2P Encke in late February after sunset before it disappeared into the Sun’s glare. Pronounced (En-Key), the comet actually passes through the field of view of the joint NASA/ESA Solar Heliospheric Observatory’s (SOHO) LASCO C3 camera from March 8th to March 14th before reemerging in the dawn sky.

Northern hemisphere observers have already got a sneak peek at Encke’s performance low in the dusk in February as it heads towards perihelion. Now the comet heads southward, as it vaults up into the dawn sky for folks south of latitude 30 degrees north in mid-March. From latitude 30 degrees north, Encke will clear 15 degrees elevation above the southeastern horizon around March 31st. Viewers south of the equator will have a much better viewing prospect, as Encke glides southward through Aquarius. When will you first spot it?

The dawn path of 2P Encke through the first week of April as seen from latitude 30 degrees north. Credit: Starry Night.

Also: don’t forget to ‘spring forward’ to Daylight Saving Time this weekend for a majority of North America prior to beginning your dawn comet vigil… Europe and the United Kingdom gets a brief reprieve ’til March 26th.

Her are some upcoming key events for Comet 2P Encke:

Closest to Sun: March 10th, with a perihelion of 0.33 AU.

Closest to Earth: March 12th, at 0.65 AU distant.

Brightest: Around March 15. Encke is currently at magnitude +7, and should top out at magnitude +6, though it’ll only be 14 degrees from the Sun on this date.

The projected light curve for comet 2P Encke. Image credit: Seiichi Yoshida’s Weekly Information About Bright Comets.

Next good apparition: 0.4 AU from Earth in 2036.

This is Encke’s 63rd passage through the solar system since Pierre Méchain linked successive passages of the comet to the same in 1819. Like Edmond Halley, Encke didn’t discover the most famous of comets that now bears his name, but instead merely deduced its periodic nature. Halley was 1st, and Encke was second (hence the “2” in 2P…) The shortest short period comet, Encke was captured sometime thousands of years ago into its short period orbit, and is destined to burn out one day as it ventures from 4.1 to 0.33 AU from the Sun. Encke is also the source of the annual Taurid meteor shower in November, notable for producing a high rate of fireballs.

Comet 2P Encke on February 19th. Image credit and copyright: Cajun Astro.

Comets can be elusive beasties, as all of that precious quoted magnitude is smeared out over an extended surface area. Add on top this the fact that comets are also notorious for often under- and occasionally over-performing expectations. Just look at the ‘none more black’ albedo of comet 67P Churumov-Gerasimenko chronicled by ESA’s Rosetta spacecraft: it’s a miracle we can see ’em at all. And finally, that low contrast dawn sky can easily hide a faint binocular comet, fading it to invisibility. Start your comet vigil early, sweeping the horizon with binocs. An early start and a clear view are key. The slim waning crescent Moon sits 12 degrees north of Comet Encke on the morning of March 26th, and the comet also passes less than 3 degrees from the Helix Nebula (NGC 7293) on (no joke) April Fool’s Day April 1st.

The view on the morning of March 26th, 30 minutes before sunrise. Credit: Stellarium.

Flashback to one Encke orbit ago to 2013 and the comet provided a good dawn preshow to that biggest of cosmic let downs, Comet ISON. And although Encke makes its rounds every 3.3 years, orbital geometry assures that we won’t get another favorable viewing from Earth until 2036.

The orbit of 2P Encke. Credit NASA/JPL

Speaking of great comets that never were, we juuuust missed having a spectacular comet this past month, when recently discovered long-period Comet 2017 E1 Borisov passes just 0.045 AU (!) interior to our orbit. Unfortunately, this occurs five months too early, with the Earth almost exactly at the wrong place in its orbit. Now, if it was only August…

Comet Teaser for 2017

Yeah, the gambler’s fallacy would tell us that we’re due for the next great comet of the century, for sure. In the meantime, we’ve still got Comets 41P/Tuttle-Giacobini-Kresák (late March/April), C/2015 ER61 PanSTARRS (May), and C/2015 V2 Johnson (June) on tap as good binocular comets in 2017.

Be sure to enjoy elusive comet Encke as it flits once more though the dawn skies.

-Read about comets, occultations, eclipses and more for the year, in our new free e-book 101 Astronomical Events for 2017 out from Universe Today.

Hunting for “Minimoons” Orbiting Earth

It’s an engaging thought experiment.

What if Earth had multiple moons?  Our world has one large natural satellite, just over a quarter the diameter, 1/50th the volume, and less than 1/80th the mass of our fair world. In fact, the Earth-Moon system has sometimes been referred to as a “binary planet,” and our Moon stands as the largest natural satellite of any planet — that is, if you subscribe to bouncing Pluto and Charon out of “the club” — in contrast to its primary of any moon in our solar system.

But what if we had two or more moons? And are there any tiny “moonlet” candidates lurking out there, awaiting discovery and perhaps exploration?

While historical searches for tiny secondary moons of the Earth — and even “moons of our Moon” — have turned up naught, the Earth does indeed capture asteroids as temporary moons and eject them back into solar orbit from time to time.

Now, a recent paper out of the University of Hawaii written in partnership with the SETI Institute and the Department of Physics at the University of Helsinki has looked at the possible prospects for the population of captured Near-Earth asteroids, and the feasibility of detecting these with existing and future systems about to come online.

The hunt for spurious moons of the Earth has a fascinating and largely untold history. Arthur Upgren’s outstanding book Many Skies devotes an entire chapter to the possible ramifications of an Earth with multiple moons… sure, more moons would be a bane for astrophotographers, but hey, eclipses and transits of the Sun would be more common, a definite plus.

In 1846, astronomer Frederic Petit announced the discovery of a tiny Earth-orbiting moon from Toulouse observatory. “Petit’s Moon” was said to orbit the Earth once every 2 hours and 44 minutes and reach an apogee of 3,570 kilometres and a perigee of just 11.4 (!) kilometres, placing it well inside the Earth’s atmosphere on closest approach.

Credit:
The announcement (in German) of the discovery of Waltemath’s Moon. “Ein zweiter Mond der Erde” translates into “a second Earth moon.” Credit: Wikimedia Commons image in the public domain.

A slightly more believable claim came from astronomer Georg Waltemath in 1898 for a moon 700 kilometres in size — he claimed it was, of course, a very dark body and not very easily visible — orbiting the Earth at about 2.5 times the distance of the Moon. Waltemath even made an announcement of his discovery, and claimed to have found a third moon of the Earth for good measure.

And a much more dubious claim came from the astrologer Walter Gornold in 1918 of a secondary moon, dubbed Lilith. Apparently, then (as now) astrologers never actually bothered to look at the skies…

Turns out, our large Moon makes a pretty good goaltender, ejecting —and sometimes taking a beating from — any tiny second moon hopeful. Of course, you can’t blame those astronomers of yore entirely. Though none of these spurious moons survived the test of observational verification, these discoveries often stemmed from early efforts to accurately predict the precise motion of the Moon. Astronomers therefore felt they were on the right track, looking for an unseen perturbing body.

Fast forward to the 21st century. Quasi-moons of the Earth, such as 3753 Cruithne, have horseshoe-shaped orbits and seem to approach and recede from our planet as both orbit the Sun. Similar quasi-moons of Venus have also been discovered.

And even returning space junk can masquerade as a moon of Earth, as was the case of J002E3 and 2010 QW1, which turned out to be boosters from Apollo 12 and the Chinese Chang’e-2 missions, respectively.

What modern researchers are looking for are termed Temporarily Captured Orbiters, or TCOs. The study notes that perhaps an average of a few dozen asteroids up to 1 to 2 metres in size are in a “steady state” population that may be orbiting the Earth at any given time on an enter, orbit, and eject sort of conveyor belt. Estimates suggest that a large 5 to 10 metre asteroid is captured every decade so, and a 100 metre or larger TCO is temporarily captured by the Earth every 100,000 years. The study also estimates that about 1% occasionally hit the Earth. And though it wasn’t a TCO, the ability to detect an Earthbound asteroid before impact was demonstrated in 2008 with the discovery of 2008 TC3, less than 24 hours prior to striking in the Sudanese desert.

“There are currently no projects that are solely looking for minimoons at this time,” lead researcher Bryce Bolin of the University of Hawaii told Universe Today. “There are several surveys, such as PanSTARRS, the Catalina Sky Survey and the Palomar Transit Factory that are currently in operation that have the capability of discovering minimoons.”

Credit:
The convoluted orbit of 2006 RH120 around the Earth-Moon system, to date the only confirmed TCO. Credit: Wikimedia Commons/Ohms law.

We’re getting better at this hazardous asteroid detection business, that’s for sure. The researchers modeled paths and orbits for TCOs in the study, and also noted that collections may “clump” at the anti-sunward L2 opposition point, and the L1 sunward point, with smaller distributions located at the east and west quadrature points located 90 degrees on either side of the Earth. The L2 point in particular might make a good place to start the search.

Ironically, systems such as LINEAR and PanSTARRS may have already captured a TCO in their data and disregarded them in their quest for traditional Near Earth Objects.

“Surveys such as PanSTARRS/LINEAR utilize a filtration process to remove artifacts and false positives in the data as it gets processed through the data pipeline,” Researcher Bryce Bolin told Universe Today. “A common method is to apply a rate of motion cut… this is effective in eliminating many artifacts (which) tend to have a rate of motion as measured by the pipeline which is very high.”

Such systems aren’t always looking for fast movers near Earth orbit that can produce a trail or streak which may reassemble space junk or become lost in the gaps over multiple detection devices. And speaking of which, researchers note that Arecibo and the U.S. Air Force’s Space Surveillance System may be recruited in this effort as well. To date, one definite TCO, named 2006 RH120 has been documented orbiting and departing from the vicinity of the Earth, and such worldlets might make enticing targets for future manned missions due to their relatively low Delta-V for arrival and departure.

Future asteroid mission. Credit: NASA
An artist’s concept of a possible future asteroid mission near Earth. Credit: NASA.

PanSTARRS-2 saw first light last year in 2013, and is slated to go online for full science operations by the end of 2014. Eventually, the PanSTARRS system will employ four telescopes, and may find a bevy of TCOs. The researchers estimate in the study that a telescope such as Subaru stands a 90% chance of nabbing a TCO after only five nights of dedicated sweeps of the sky.

Finally, the study also notes that evidence miniature moonlets orbiting Earth may lurk in the all sky data gathered by automated cameras and amateur observers during meteor showers.  Of course, we’re talking tiny, dust-to-pebble sized evidence, but there’s no lower limit as to what constitutes a moon…

And so, although moons such a “Lilith” and “Petit’s Moon” belong to the annuals of astronomical history, temporary “minimoons” of Earth are modern realities. And as events such as Chelyabinsk remind us, it’s always worthwhile to hunt for hazardous NEOs (and TCOs) that may be headed our way. Hey, to paraphrase science fiction author Larry Niven: unlike the dinosaurs, we have a space program!

Read more about the fascinating history of moons that never were and more in the classic book The Haunted Observatory.

Comet ISON Goes Green

As NASA and the European Space Agency prepare  their remote photojournalists – Mars Express, Mars Reconnaissance Orbiter and the Curiosity and Opportunity rovers – to capture photos of Comet ISON’s flyby of Mars early next week, amateur astronomers continue to monitor and photograph the comet from backyard observatories across the blue Earth. Several recent color photos show ISON’s bright head or nucleus at the center of  a puffy, green coma. Green’s a good omen – a sign the comet’s getting more active as it enters the realm of the inner solar system and sun’s embrace.

Another  photo of a "greening" Comet ISON taken on Sept. 24 with a 17-inch (43-cm) telescope. Click to enlarge. Credit: Damian Peach
Another great photo of the “greening” of Comet ISON taken on Sept. 24 with a 17-inch (43-cm) telescope. Click to enlarge. Credit: Damian Peach

Sunlight beating down on the comet’s nucleus (core) vaporizes dust-impregnated ice to form a cloud or coma, a temporary atmosphere of water vapor, dust, carbon dioxide, ammonia and other gases. Once liberated , the tenuous haze of comet stuff rapidly expands into a huge spherical cloud centered on the nucleus. Comas are typically hundreds of thousands of miles across but are so rarified you could wave your hand through one and not feel a thing. The Great Comet of 1811 sported one some 864,000 miles (1.4 million km) across, nearly the same diameter as the sun!

Among the materials released by solar heating are cyanogen and diatomic carbon. Both are colorless gases that fluoresce a delicious candy-apple green when excited by energetic ultraviolet light in sunlight.

Sounds like a plan. Newspaper clipping from 1910.
Sounds like a plan. Newspaper clipping from 1910.

Cyanogen smells pleasantly of almonds, but it’s a poisonous gas composed of one atom each of carbon and nitrogen. Diatomic carbon or C2 is equally unpleasant. It’s a strong, corrosive acid found not only in comets but also created as a vapor in high-energy electric arcs. But nature has a way of taking the most unlikely things and fashioning them into something beautiful. If you’re concerned about the effects of cometary gas and dust on people, rest easy. They’re spread too thinly to touch us here on Earth. That didn’t stop swindlers from selling “comet pills” and gas masks to protect the public from poisoning during the 1910 return of Halley’s Comet. Earth passed through the tail for six hours on May 19 that year. Amazingly, those who took the pills survived … as did everyone else.

Comet ISON's location and approximate appearance on October 1 seen from the Curiosity Rover. ISON will pass only 6.7 million miles (10.8 million km) from Mars on Tuesday Oct. 1. Stellarium
Comet ISON’s location and approximate appearance on October 1 seen from the Curiosity Rover. ISON will pass only 6.7 million miles (10.8 million km) from Mars on Tuesday Oct. 1. Stellarium

While Comet ISON is still too faint for visual observers to discern its Caribbean glow, that will change as it beelines for the sun and brightens. If you could somehow wish yourself to Mars in the next few days, I suspect you’d easily see the green coma through a telescope. The comet – a naked eye object at magnitude 2.5-3 – glows low in the northern sky from the Curiosity rover’s vantage point 4.5 degrees south of the Martian equator.

Comet Hale-Bopp shows off its whitish dust tail and fainter, blue ion tail in early 1997. Credit: Bob King
Comet Hale-Bopp shows off its bright dust tail and fainter, blue ion tail in early spring 1997. Credit: Bob King

I’ve noticed that when a comet reaches about 7th magnitude, the green coloration becomes apparent in 8-inch (20 cm) and larger telescopes. Bright naked eye comets often display multiple subtle colors that change chameleon-like over time. Dust tails, formed when sunlight pushes dust particles downwind from the coma, glow pale yellow. Gusty solar winds sweep back molecules from the coma into a second “ion” tail that glows pale blue from jazzed up carbon monoxide ions fluorescing in solar UV.

The highlight of seeing the comet through the telescope was its brilliant, pea-like false nucleus glowing yellow from sunlit dust. The real comet nucleus – the actual comet – lies within the false nucleus and shrouded by dust. Drawing: Bob King
One of the highlights of seeing Comet L4 PANSTARRS through a small telescope was its brilliant, pea-like false nucleus glowing yellow from sunlit dust. The real comet nucleus – the actual comet – lies within the false nucleus and hidden by dust. Drawing: Bob King

During close encounters with the sun, millions of pounds of  dust per day boil off a comet’s nucleus, forming a small, intensely bright, yellow-orange disk in the center of the coma called a false nucleus. Earlier this year, when Comet C/2011 L4 PANSTARRS emerged into the evening sky after perihelion, not only was its yellow tail apparent to binocular users but the brilliant false nucleus glowed a lovely shade of lemon in small telescopes.

With ISON diving much closer to the sun than L4 PANSTARRS, expect a full color palette in the coming weeks. While it may not be easy being green for Sesame Street’s Kermit the Frog, comets do it with aplomb.

Bazinga: Mysterious Earth Orbiting Asteroid Turns Out to be Space Junk

Can’t find asteroid 2010 QW1 in the Minor Planet Database? No, the “Men in Black” didn’t secretly remove this Earth-orbiting asteroid from the listing… but recent top-notch detective work by astronomers did.

The mystery of this object all started back on August 23rd of this year, when the PanSTARRS sky survey based on the summit of Haleakala on the island of Maui in Hawai’i spotted an asteroid that was given the provisional designation of 2013 QW1.

The object was in a wide-ranging orbit around the Earth, leading astronomers to wonder if it was a naturally captured asteroid or perhaps space debris from a previous launch. Either solution to the dilemma would be fascinating. Our large Moon keeps the Earth pretty well swept clear of debris, though a “second Moon,” however small, would be an interesting find. And if 2013 QW1 were to prove artificial, it just might be a piece of history.

The European Space Agency’s NEO Coordination Centre decided to take up the challenge. A call went out to track and observe the 2013 QW1, and a team led by Elisabetta Dotto of INAF-Observatorio di Roma & Maria Barucci & Davide Perna of the Observatoire de Paris managed to get time on the Italian Telescopio Nazaionale Galileo based at La Palma to obtain a spectrum of the object.

“It was a bit of a challenge, because the object was moving fast with respect to a typical NEO,” said Dr. Perna in a recent ESA press release.

The team used an instrument known as DOLORES to make the crucial measurements. DOLORES stands for the Device Optimized for LOw RESolution. The spectrum obtained in the early morning hours of August 25th shows something much brighter than your typical asteroid, but is characteristic of a painted metallic object.

The launch of Chan'ge-2 with 3rd stage (arrowed) now known as 2010 Q (Credit CALT).
The launch of Chan’ge-2 with 3rd stage (arrowed) now known as 2013 QW1 (Credit: CALT).

And thus, 2013 QW1 was removed from the ledger of NEO asteroids maintained by the IAU Minor Planet Center (MPEC). And the leading suspect? The third stage booster of a Chinese Long March 3C rocket that launched the Chang’e 2 spacecraft from Xichang, China on October 1st, 2010.

Chang’e-2 entered lunar orbit 8 days after launch, and departed on June 8th of the following year after studying and mapping the Moon. Chang’e-2 then went on to become the first spacecraft to directly reach the L2 Lagrange point 1.5 million kilometres beyond Earth from lunar orbit. The spacecraft also made the first flyby of NEO asteroid 4179 Toutatis on December 13th of last year. The probe is estimated to continue functioning into 2014, and will be used to hone China’s ability to track objects in deep space.

The NORAD tracking identification assigned to the 3rd stage booster that launched Chan’ge-2 is 2010-50B.

This sort of discovery is not without precedent.

The launch of Apollo 12, with the 2nd stage arrowed. (Credit: NASA).
The launch of Apollo 12, with the 3rd stage (arrowed) would one day be “asteroid Joo2E3”. (Credit: NASA).

On September 3rd, 2002, amateur astronomer Bill Yeung discovered an asteroid tentatively designated J002E3. Subsequent studies revealed that the asteroid had a spectrum consistent with that of titanium oxide paint, a decidedly unasteroid-like coating for a space rock to sport. This was, however, a common veneer in use during the Apollo era, and it is now known that J002E3 is the S-IVB third stage booster that launched the second mission to land men on the Moon on November 14th, 1969. Unlike other boosters, such as the one that launched Apollo 14, the Apollo 12 3rd stage did not impact the Moon as part of seismic experiments. After a brief period as a “pseudo-moon” of the Earth, J002E3 was kicked out into solar orbit in June 2003 and may return to our neighborhood once again in the 2040s.     

NASA’s Lunar Reconnaissance Orbiter has documented the lunar crash sites of these historic boosters. It’s of note that the Apollo 10 Lunar Module Snoopy remains discarded out in solar orbit as well, having been used as a dress rehearsal for the historic Apollo 11 landing. Apollo 10 never landed on the Moon. Efforts have been made by UK astronomer Nick Howes to recover it as well.

And there are more relics of the Space Age awaiting discovery. One of the first things we always check in the case of a pass by a newly discovered NEO closer than the Moon to the Earth is its history, to see if it matches up with any launches headed out beyond Earth orbit in the past.

And the upcoming Mars launches of MAVEN and India’s Mars Orbiter Mission in October & November will be the first to depart Earth orbit since 2011. These will give future generations of asteroid hunters new human-made space hardware to ponder.

The B612 Foundation’s asteroid-hunting Sentinel Space Telescope will also “up the game,” scouting for asteroids from a vantage point interior to the Earth’s orbit. Sentinel is slated for launch in 2016 atop a SpaceX Falcon 9 rocket.

And no, the fabled “Black Knight” satellite of UFO conspiracy buffs’ dreams is nowhere to be found.

What other fascinating relics of the Space Age lie are out there in the solar system, waiting to tell their tale?

Catch Comet Lemmon While You Can

If you honed your observing chops on Comet PANSTARRS this spring, consider dropping in on Comet Lemmon, now returning to the dawn sky. Southern hemisphere observers saw this comet at its brightest in March when it briefly became dimly visible with the naked eye. It’s now faded to around magnitude 6, the same as the faintest stars you can see under a rural sky.

Because it’s been “vacationing” in the southern constellations, northerners have had to wait until now to see it.

Comet Lemmon with gas (left) and dust tails on April 24. Click to see a short movie showing rapid changes in the comet's tail in 25 minutes. Credit: Gerald Rhemann
Comet Lemmon with gas (left) and dust tails on April 24. Click to see a short movie showing rapid changes in the comet’s tail in 25 minutes. Credit: Gerald Rhemann

Like PANSTARRS, C/2012 F6 Lemmon is visible in modest-sized binoculars (7x35s, 10x50s) as a small, fuzzy ball of light with perhaps a faint tail. Watch for it to slowly track along the eastern side of the Great Square of Pegasus for the remainder of April and May. It competes with twilight low in the eastern sky this week but gradually becomes better placed for viewing as May unfolds. The best time to look is about an hour and a half before sunrise now and 2 hours before sunrise by mid-May.

The waning moon interferes some until around May 5. On the 6th, watch for the thin lunar crescent moon to pass 8 degrees below the comet. Around that time, we’ll finally get a good view of Lemmon in a dark, moonles sky just before the start of dawn.

On May 6 a beautiful thin moon will be near Comet Lemmon at dawn. This map shows the sky about 1 1/4 hours before sunrise. Stellarium
On May 6 a beautiful thin moon will be near Comet Lemmon at dawn. This map shows the sky about 1 1/4 hours before sunrise. Stellarium

Comet Lemmon will fade from naked eye limit to a dim binocular smudge of 7.5 magnitude  by mid-May. If you have a telescope, look for a pair of tails – a short, diffuse one of dust particles and the straight, streak-like gas tail fluorescing in the sun’s ultraviolet light. The tails point approximately to the south-southwest. Catch this comet while you can!

Keeping up with Comet PANSTARRS through the end of March

Wow – what an image! Michael Jaeger’s photo of Comet C/2011 L4 PANSTARRS on March 19 resembles those taken by the orbiting Stereo-B spacecraft. Check out this video (and the one below) to see what I mean. Most  observers using binoculars and telescopes are seeing the comet’s head, bright false nucleus and a single plume-like tail.

Michael Jaeger of Stixendorf, Austria has been shooting beautiful comet images since 1982. Credit: Michael Jaeger
Michael Jaeger of Stixendorf, Austria has been shooting beautiful comet images since 1982. Credit: Michael Jaeger

Careful photography like Jaeger’s reveals so much more – two bright, broad dust tails and three shorter spikes. One of the dust tails peels off to the left of the comet’s head, the other extends upward feather-like before splitting into two separate streamers. There are also several narrow, spike-like tails due to various excited elements and gas emissions from the comet’s icy nucleus.

Video of Comet PANSTARRS made from pictures taken by NASA’s STEREO-B spacecraft on March 13, one of two spacecraft that orbit ahead and behind Earth monitoring solar activity on the sun’s farside.

Michael Jaeger of Austria has been shooting pictures of comets since 1982. His images always reveal details that entice visual observers to go out and look for more than what first meets the eye. Last night I got my first look at the comet through a telescope and was delighted at the sight of its smooth, luminous tail and brilliant yellow false-nucleus. The false nucleus is the bright spot visible in the center of the PANSTARRS’ head; in 10×50 binoculars it looks like a star. Through a telescope it’s a fuzzy, yellow pea. Buried deep within the false nucleus is the icy comet nucleus itself, vaporizing in the sun’s heat and shrouded by its own dust.

Comet PANSTARRS last night March 19, 2013 in a setting with white pines. Details: 300mm lens, f/2.8, ISO 800 and 3-second exposure. Credit: Bob King
Comet PANSTARRS last night March 19, 2013 in the company of white pines. Details: 300mm lens, f/2.8, ISO 800 and 3-second exposure. Credit: Bob King

The comet has faded in the past week or two from 1st magnitude – equal to some of the brightest stars – to about magnitude 2.5 or somewhat fainter than the stars of the Big Dipper. In very clear skies, it was still dimly visible with the naked eye about 40 minutes after sunset low in the northwestern sky. I only knew where to look after first finding the comet in 10×50 binoculars. The tail points straight up and stretches nearly 2 degrees in length once the sky gets dark enough to increase contrast and before PANSTARRS sinks too low. I kept it in view for nearly an hour from a wind-whipped location north of Duluth, Minn.

The comet at 64x through a 15-inch (37cm) telescope on March 19, 2013. The pale yellow false nucleus highlights the smooth, curved tail. Illustration: Bob King
The comet at 64x through a 15-inch (37cm) telescope on March 19, 2013. The pale yellow false nucleus highlights the smooth, curved tail. Illustration: Bob King

Through the telescope the nucleus blazed yellow from sunlit dust. Set inside the comet’s sleek, smooth head it reminded me of a lighthouse beacon shining through the mist. Gorgeous! The tail trailed bent back to the northeast with a slight arc. I highly recommend setting up your telescope for a look at PANSTARRS, if for no other reason than to see the beauty of the false-nucleus within the finger-like tail.

Use this map to find Comet PANSTARRS now through March 31. It depicts the sky facing west-northwest 30 minutes after sunset. The comet’s height remains fairly steady at about 10-14 degrees but it moves steadily northward (to the right). The yellow circles represent the sun’s position every 3 days. It also moves northward but more slowly. One fist equals about 10 degrees of sky. Created with Chris Marriott’s SkyMap software
Use this map to find Comet PANSTARRS now through March 31. It depicts the sky facing west-northwest 30-40 minutes after sunset. The comet’s height remains fairly steady at about 10-14 degrees but it moves steadily northward (to the right). The yellow circles represent the sun’s position every 3 days. It also moves northward but more slowly. One fist equals about 10 degrees of sky. Created with Chris Marriott’s SkyMap software

You can use the chart to help you find the comet for the remainder of the month. It shows the comet’s position every 3 days now through March 31 from mid-northern latitudes, specially 42 degrees north (Chicago, Ill.). If you live in the northern U.S., the comet will be in approximately the same positions but slightly higher in the sky; in the southern U.S. it will be a little lower. Notice the “15 degree” altitude line. If you set the bottom of your fist flat on the horizon, the 15 degree line is a fist and a half above that level.

Boulder Panstarrs from Patrick Cullis on Vimeo.

Time lapse video made by Patrick Cullis showing Comet PANSTARRS setting behind the Flatirons of Boulder, Col. on March 19. As you watch, notice how the comet appears against the sky background and the direction it moves toward the horizon – both clues to help you find it.

The map compensates for the sun rising later each night and shows the comet’s height above the horizon when the sun is 7.5 degrees below the horizon. 7.5 degrees corresponds to about 30 minutes after sunset. Notice that the sun moves northward (to the right) just like the comet does over the next couple weeks but more slowly.

A compass has two sets of markings. One shows the basic directions N, S, etc. Those directions are subdivided into degrees of azimuth seen in the outer ring. Credit: Wikipedia
A compass has two sets of markings. One shows the basic directions N, S, etc. Those directions are subdivided into degrees of azimuth seen in the outer ring. Credit: Wikipedia

See those yellow numbers along the map’s horizon? Those are compass bearings called azimuths. If you have a compass, dig it out and give it a look. Every compass is marked in degrees of azimuth. 270 degrees is due west, 285 degrees is a fist and a half to the right of due west, 315 degrees is exactly halfway between due west and due north. North can be either 360 degrees or 0 degrees. Azimuths are simple way to subdivide directions to make them more precise.

Comet PANSTARRS very low in the northwestern sky shortly before setting last night March 19. Details: 300mm lens, f2.8, ISO 3200 and about 4 seconds.  Credit: Bob King
Comet PANSTARRS very low in the northwestern sky shortly before setting last night March 19. Details: 300mm lens, f2.8, ISO 3200 and about 4 seconds exposure. Credit: Bob King

The next time it’s clear, bring your binoculars and a compass (if needed) and find a location with a great view of the western sky preferably down to the horizon. Use the map along with the compass bearings to guide your eyes in the right direction. You can also use the sun’s position below the horizon to point you to the comet by angling up from the lingering glow at the sunset point. Remember to first focus your binoculars on the moon, cloud bank or star before attempting to find PANSTARRS. There’s nothing more frustrating than sweeping for a fuzzy comet with an out-of-focus instrument.