VISTA View Is Chock Full Of Galaxies

[/caption]

See all those tiny points of light in this image? Most of them aren’t stars; they’re entire galaxies, seen by the European Southern Observatory’s VISTA survey telescope located at the Paranal Observatory in Chile.

This is a combination of over 6000 images taken with a total exposure time of 55 hours, and is the widest deep view of the sky ever taken in infrared light.

The galaxies in this VISTA image are only visible in infrared light because they are very far away. The ever-increasing expansion rate of the Universe shifts the light coming from the most distant objects (like early galaxies) out of visible wavelengths and into the infrared spectrum.

(See a full-size version — large 253 mb file.)

ESO’s VISTA (Visual and Infrared Survey Telescope for Astronomy) telescope is the world’s largest and most powerful infrared observatory, and has the ability to peer deep into the Universe to reveal these incredibly distant, incredibly ancient structures.

By studying such faraway objects astronomers can better understand how the structures of galaxies and galactic clusters evolved throughout time.

The region seen in this deep view is an otherwise “unremarkable” and apparently empty section of sky located in the constellation Sextans.

Read more on the ESO website here.

The VISTA telescope in its dome at sunset. Its primary mirror is 4.1 meters wide. G. Hüdepohl/ESO.

 

Arecibo Observatory

[/caption]
Named after the nearby city in Puerto Rico, the Arecibo Observatory (or Arecibo Radio Telescope) is the largest single-aperture (radio) telescope ever built, 305 m in diameter.

Taking advantage of a karst sinkhole, Cornell University built a spherical reflector out of wire mesh, with receivers at the focus suspended by 18 steel cables strung from three concrete towers on the rim. It took three years to build, and was completed in 1963. Since then it has been upgraded several times; for example, in 1974 perforated aluminum panels replaced the wire mesh, and a Gregorian reflector system added to the receiver mechanism in 1997. Among other things, these upgrades have extended the range of radio wavelengths Arecibo can operate at, both as a radio telescope and for radar astronomy.

Such a visually interesting piece of scientific hi-tech has lead to Arecibo playing a role in many movies and TV shows, from James Bond’s Golden Eye to Contact to X-Files.

Everyone knows about [email protected], right? Well, it’s receivers on Arecibo that supply the data which the millions of PCs crunch!

Arecibo has played a key role in many astronomical discoveries, from the rotation period of Mercury (a radar astronomy application, in 1964), to the pulses of the Crab Nebula (1968), to studies of pulsars by Hulse and Taylor (1974) that lead to their Nobel Prize (1993), and to direct imaging of asteroids (another radar astronomy application, first done in 1989).

Due to budget cutbacks and changes in research priorities, the future of Arecibo is uncertain (most of its funding comes from the National Science Foundation); maybe you can find a way to save it?

Here’s the official Arecibo Observatory website; ALFA is a current large-scale astronomical survey being done at Arecibo, in case you don’t already know about [email protected], and click here to read more about planetary radar.

Calling All Amateur Astronomers: Help Comb Through Arecibo Data for Gems, Arecibo Spots Triple Asteroid, Arecibo Gets an Upgrade: just three of the many Universe Today stories featuring the Arecibo Observatory!

Some of the ways Arecibo contributes to astronomy are covered in Astronomy Casts The Rise of Supertelescopes, and Across the Electromagnetic Spectrum.

Source: National Astronomy and Ionosphere Center: Arecibo Observatory

Ulysses Passes Over Sun’s North Pole

ulysses_spacecraft.thumbnail.jpg

Continuing on its epic journey around the Sun, Ulysses has reached the Sun’s north pole just in the nick of time. In fact, its timing couldn’t be better, just as the Sun begins “Solar Cycle 24”. The probe is in a unique orbit, passing over the solar north and south poles, out of the ecliptic plane of the solar system, giving it an unprecedented view of parts of the Sun we cannot observe on Earth. “Graveyards for sunspots” and mysterious coronal holes lurk in these regions and Ulysses will be perfectly placed, directly above.

The joint NASA and ESA Ulysses mission has been a resounding success in its 18 years of operation since launch on board Space Shuttle Discovery (STS-41) in October 1990. The intrepid spacecraft was helped on it’s way by a gravitational assist by the planet Jupiter which flung it over the poles of the Sun. Quietly travelling in a perpendicular orbit (space missions and the planets usually orbit around the Sun’s equator), Ulysses has been measuring the distribution of solar wind particles emanating from latitudinal locations for one and a half orbits.

As Ulysses passes over the north polar region, the Sun will be observed during a period of minimum activity at this location for the first time. The poles of the Sun are of particular interest to scientists as this is where the fast solar wind originates from open magnetic field lines reaching into space. The dynamics of solar material in this location provides information on how the Sun interacts with interplanetary space and how the solar wind is generated. Observing the solar wind at “solar minimum” will be of massive interest as it may provide some answers as to why the solar wind is accelerated hundreds of kilometers per hour even when activity is at its lowest.

Just as Earth’s poles are crucial to studies of terrestrial climate change, the sun’s poles may be crucial to studies of the solar cycle.” – Ed Smith, Ulysses project scientist, NASA Jet Propulsion Laboratory.

The dynamics of low altitude magnetic fields in polar regions are also a focus for interest. As 11-year solar cycles progress, sunspot population increase near the solar equator. As the magnetic field is “wound up”, sunspots (and their associated magnetic flux) drift toward the poles where they slowly disappear as the old magnetic field sinks back into the Sun, quite accurately described as sunspot graveyards. Understanding how this cycle works will help to reveal the secrets of the solar cycle and ultimately help us understand the mechanisms behind Space Weather.

Source: NASA Featured News