A Star Passed Through the Solar System Just 70,000 Years Ago

A binary star system Credit: Michael Osadciw/University of Rochester

Astronomers have reported the discovery of a star that passed within the outer reaches of our Solar System just 70,000 years ago, when early humans were beginning to take a foothold here on Earth. The stellar flyby was likely close enough to have influenced the orbits of comets in the outer Oort Cloud, but Neandertals and Cro Magnons – our early ancestors – were not in danger. But now astronomers are ready to look for more stars like this one.

A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz's Star and companion passed along the outer boundaries of our Solar System (Credit: NASA, Michael Osadciw/University of Rochester)
A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz’s Star and companion passed along the outer boundaries of our Solar System (Credit: NASA, Michael Osadciw/University of Rochester, Illustration-T.Reyes)

Lead author Eric Mamajek from the University of Rochester and collaborators report in The Closest Known Flyby Of A Star To The Solar System (published in Astrophysical Journal on February 12, 2015) that “the flyby of this system likely caused negligible impact on the flux of long-period comets, the recent discovery of this binary highlights that dynamically important Oort Cloud perturbers may be lurking among nearby stars.”

The star, named Scholz’s star, was just 8/10ths of a light year at closest approach to the Sun. In comparison, the nearest known star to the Sun is Proxima Centauri at 4.2 light years.

While the internet has been rife with threads and accusations of a Nemesis star that is approaching the inner Solar System and is somehow being “hidden” by NASA, this small red dwarf star with a companion represents the real thing.

In 1984, the paleontologists David Raup and Jack Sepkoski postulated that a dim dwarf star, now widely known on the internet as the Nemesis Star, was in a very long period Solar orbit. The elliptical orbit brought the proposed star into the inner Solar System every 26 million years, causing a rain of comets and mass extinctions on that time period. By no coincidence, because of the sheer numbers of red dwarfs throughout the galaxy, Scholz’s star nearly fits such a scenario. Nemesis was proposed to be in a orbit extending 95,000 A.U. compared to Scholz’s nearest flyby distance of 50,000 A.U. Recent studies of impact rates on Earth, the Moon and Mars have discounted the existence of a Nemesis star (see New Impact Rate Count Lays Nemesis Theory to Rest, Universe Today, 8/1/2011)

But Scholz’s star — a real-life Oort Cloud perturber — was a small red dwarf star star with a M9 spectral classification. M-class stars are the most common star in our galaxy and likely the whole Universe, as 75% of all stars are of this type. Scholz’s is just 15% of the mass of our Sun. Furthermore, Scholz’s is a binary star system with the secondary being a brown dwarf of class T5. Brown Dwarfs are believed to be plentiful in the Universe but due to their very low intrinsic brightness, they are very difficult to discover … except, as in this case, as companions to brighter stars.

The astronomers reported that their survey of new astrometric data of nearby stars identified Scholz’s as an object of interest. The star’s transverse velocity was very low, that is, the stars sideways motion. Additionally, they recognized that its radial velocity – motion towards or away from us, was quite high. For Scholz’s, the star was speeding directly away from our Solar System. How close could Scholz’s star have been to our system in the past? They needed more accurate data.

The collaborators turned to two large telescopes in the southern hemisphere. Spectrographs were employed on the Southern African Large Telescope (SALT) in South Africa and the Magellan telescope at Las Campanas Observatory, Chile. With more accurate trangental and radial velocities, the researchers were able to calculate the trajectory, accounting for the Sun’s and Scholz’s motion around the Milky Way galaxy.

Scholz’s star is an active star and the researchers added that while it was nearby, it shined at a dimly of about 11th magnitude but eruptions and flares on its surface could have raised its brightness to visible levels and could have been seen as a “new” star by primitive humans of the time.

The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)
The relative sizes of the inner Solar System, Kuiper Belt and the Oort Cloud. (Credit: NASA, William Crochot)

At present, Scholz’s star is 20 light years away, one of the 70 closest stars to our Solar System. However, the astronomers calculated, with a 98% certainty, that Scholz’s passed within 0.5 light years, approximately 50,000 Astronomical Units (A.U.) of the Sun.

An A.U. is the mean distance from the Earth to the Sun and 50,000 is an important mile marker in our Solar System. It is the outer reaches of the Oort Cloud where billions of comets reside in cold storage, in orbits that take hundreds of thousands of years to circle the Sun.

With this first extraordinary close encounter discovered, the collaborators of this paper as well as other researchers are planning new searches for “Nemesis” type stars. The Large Synoptic Survey Telescope (LSST) and other telescopes within the next decade will bring an incredible array of data sets that will uncover many more red dwarf, brown dwarf and possibly orphan planets roaming in nearby space. Some of these could likewise be traced to past or future near misses to the Sun and Earth system.

WISE Nabs the Closest Brown Dwarfs Yet Discovered

WISE J104915.57-531906 from NASA's WISE survey (centered) and resolved to should its binary nature by the Gemini Observatory (inset). (Credit: NASA/JPL/Gemini Observatory/AURA/NSF).

We now know our stellar neighbors just a little better, and a new discovery may help tell us how common brown dwarfs are in our region of the galaxy. Early this week, researchers at Pennsylvania State University announced the discovery of a binary brown dwarf system. With a parallax measurement of just under 0.5”, this pair is only 6.5 light years distant making it the third closest system to our own and the closest example of the sub-stellar class of objects known as brown dwarfs yet discovered.

Named WISE J104915.57-531906, the system was identified by analysis of multi-epoch astrometry carried out by NASA’s Wide-field Infrared Survey Explorer (WISE). The discovery was made by associate professor of astronomy and astrophysics at Penn State’s Center for Exoplanets and Habitable Worlds Kevin Luhman. The system’s binary nature and follow up observations were confirmed by spectroscopic analysis carried out by the Gemini Observatory’s Multi-Object Spectrographs (GMOS).

Animation showing the motion of WISE 1049-5319 across the All-WISE, 2MASS & Sloan Digital Sky Survyies from 1978 to 2010. (Credit: NASA/STScI/JPL/IPAC/University of Massachusetts.)
Animation showing the motion of WISE 1049-5319 across the All-WISE, 2MASS & Sloan Digital Sky Surveys from 1978 to 2010. (Credit: NASA/STScI/JPL/IPAC/University of Massachusetts.)

This find is also the closest stellar system discovered to our own solar system since the discovery of Barnard’s star by astronomer E.E. Barnard in 1916. Incidentally, Barnard’s star was the center of many spurious and controversial claims of extrasolar planet discoveries in the mid-20th century. Barnard’s star is 6 light years distant, and the closest star system to our own is Alpha Centauri measured to be 4.4 light years distant in 1839. In 1915, the Alpha Centauri system was determined to have a faint companion now known as Proxima Centauri at 4.2 light years distant. The Alpha Centauri system also made headlines last year with the discovery of the closest known exoplanet to Earth. WISE 1506+7027 is the closest brown dwarf to our solar system yet discovered. This also breaks the extended the All-WISE survey’s own previous record of the closest brown dwarf released in 2011, WISE 1506+7027 at 11.1 light years distant.

When looking for nearby stellar suspects, astronomers search for stars displaying a high proper motion across the sky. The very first parallax measurement of 11 light years distant was obtained by Friedrich Bessel for the star 61 Cygni in 1838. 61 Cygni was known as “Piazzi’s Flying Star” for its high 4.2” proper motion across the sky. To giving you an idea of just how tiny an arc second is, a Full Moon is about 1800” in diameter. With a proper motion of just under 3” per year, it would take WISE 1049-5319 over 600 years to cross the same apparent distance in the sky as viewed from the Earth!

An artist's conception of looking back at Sol from the binary brown dwarf system WISE 1049-5319, 6.5 light years distant. (Credit: Janella Williams, Penn State University).
An artist’s conception of looking back at Sol from the binary brown dwarf system WISE 1049-5319, 6.5 light years distant. (Credit: Janella Williams, Penn State University).

“Based on how this star system was moving in images from the WISE survey, I was able to extrapolate back in time to predict where it should have been located in older surveys,” stated Luhman. And sure enough, the brown dwarf was there in the Deep Near-Infrared Survey of the Southern Sky (DENIS), the Two Micron All-Sky Survey (2MASS) and the Sloan Digitized Sky Survey (SDSS) spanning a period from 1978 to 1999. Interestingly, Luhman also points out in the original paper that the pair’s close proximity to the star rich region of galactic plane in the constellation Vela deep in the southern hemisphere sky is most likely the reason why they were missed in previous surveys.

The discovery of the binary nature of the pair was also “an unexpected bonus,” Luhman said. “The sharp images from Gemini also revealed that the object actually was not just one, but a pair of brown dwarfs orbiting each other.” This find of a second brown dwarf companion will go a long way towards pinning down the mass of the objects. With an apparent separation of 1.5”, the physical separation of the pair is 3 astronomical units (1 AU= the Earth-Sun distance) in a 25 year orbit.

Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).
Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).

Brown dwarfs are sub-stellar objects with masses too low (below ~75 Jupiter masses) to sustain the traditional fusion of hydrogen into helium via the full proton-proton chain process. Instead, objects over 13 Jupiter masses begin the first portion of the process by generating heat via deuterium fusion. Brown dwarfs are thus only visible in the infrared, and run a spectral class of M (hottest), L, T, and Y (coolest). Interestingly, WISE 1049-5319 is suspected to be on the transition line between an L and T-class brown dwarf. To date, over 600 L-type brown dwarfs have been identified, primarily by the aforementioned SDSS, 2MASS & DENIS infrared surveys.

General location of WISE 1049-5319 in the constellation Vela. Note its proximity to the galactic plane. (Created by the author using Starry Night).
General location of WISE 1049-5319 in the constellation Vela. Note its proximity to the galactic plane. (Created by the author using Starry Night).

This discovery and others like it may go a long ways towards telling us how common brown dwarfs are in our region of the galaxy. Faint and hard to detect, we’re just now getting a sampling thanks to surveys such as WISE and 2MASS. The James Webb Space Telescope will do work in the infrared as well, possibly extending these results. Interestingly, Luhman notes in an interview with Universe Today that the potential still exists for the  discovery of a brown dwarf closer to our solar system than Alpha Centauri. “No published study of the data from WISE or any other survey has ruled out this possibility… WISE is much more capable of doing this than any previous survey, but the necessary analysis would be fairly complex and time consuming. It’s easier to find something than to rule out its existence.” Said Luhman. Note that we’re talking a nearby brown dwarf that isn’t gravitationally bound to the Sun… this discussion is separate from such hypothetical solar companions as Nemesis and Tyche…and Nibiru conspiracy theorists need not apply!

The WISE 1049-5319 system is also a prime target in the search for nearby extra-solar planets.  “Because brown dwarfs have very low masses, they exhibit larger reflex motions due to orbiting planets than more massive stars, and those larger reflex motions will be easier to detect.” Luhman told Universe Today. Said radial surveys for exoplanets would also be carried out in the IR band, and brown dwarfs also have the added bonus of not swamping out unseen planetary companions in the visible spectrum.

Congrats to Mr. Luhman and the Center for Exoplanets and Habitable Worlds on the discovery. You just never know what’s lying around in your own stellar backyard!

Read this original discovery paper here.