Midway Between Storms: Our Guide to the 2014 Leonid Meteors

If there’s one meteor shower that has the potential to bring on a storm of epic proportions, it’s the Leonids. Peaking once every 33 years, these fast movers hail from the Comet 55P Temple-Tuttle, and radiate from the Sickle, or backwards “question mark” asterism in the constellation Leo.  And although 2014 is an “off year” in terms of storm prospects, it’s always worth taking heed these chilly November mornings as we await the lion’s roar once again.

The prospects: 2014 sees the expected peak of the Leonids arriving around 22:00 Universal Time (UT) which is 5:00 PM EST. Locally speaking, a majority of meteor showers tend to peak in the early AM hours past midnight, as the observer’s location turns forward facing into the oncoming meteor stream. Think of driving in an early November snowstorm, with the car being the Earth and the flakes of snow as the oncoming meteors. And if you’ve (been fortunate enough?) to have never seen snow, remember that it’s the front windshield of the car going down the highway that catches all of the bugs!

This all means that in 2014, the Asian Far East will have an optimal viewing situation for the Leonids, though observers worldwide should still be vigilant. Of course, meteor showers never read online prognostications such as these, and often tend to arrive early or late.  The Leonids also have a broad range of activity spanning November 6th through November 30th.

Credit: Starry Night Education Software.
The November path of the radiant of the 2014 Leonids. Credit: Starry Night Education Software.

The predicted ideal Zenithal Hourly Rate for 2014 stands at about 15, which is well above the typical background sporadic rate, but lower than most years. Expect the actual sky position of the radiant and light pollution to lower this hourly number significantly. And speaking of light pollution, the Moon is a 21% illuminated waning crescent on the morning of November 17th, rising at around 2:00 AM local in the adjacent constellation of Virgo.

The Leonids can, once every 33 years, produce a storm of magnificent proportions. The history of Leonid observation may even extend back as far as 902 A.D., which was recorded in Arab annals as the “Year of the Stars.”

But it was the morning of November 13th, 1833 that really gained notoriety for the Leonids, and really kicked the study of meteor showers into high gear.

Credit:
A depiction of the 1868 Leonids by Étienne Léopold Trouvelot from The Trouvelot Astronomical Drawings, 1881. Image in the Public Domain.

The night was clear over the U.S. Eastern Seaboard, and frightened townsfolk were awakened to moving shadows on bedroom walls. Fire was the first thing on most people’s minds, but they were instead confronted with a stunning and terrifying sight: a sky seeming to rain stars in every direction. Churches quickly filled up, as folks reckoned the Day of Judgment had come.  The 1833 Leonid storm actually made later historical lists as one of the 100 great events in the United States for the 19th century. The storm has also been cited as single-handedly contributing to the religious fundamentalist revivals of the 1830s. Poet Walt Whitman witnessed the 1833 storm, and the song The Stars Fell on Alabama by Frank Perkins was inspired by the event as well.

Wikimedia Commons image in the Public Domain.
Live in Alabama? Then you may well possess a license plate that commemorates the 1833 Leonid Storm. Wikimedia Commons image in the Public Domain.

But not all were fearful. Astronomer Denison Olmsted was inspired to study the radiants and paths of meteor streams after the 1833 storm, and founded modern meteor science. The Leonids continued to produce storms at 33 year intervals, and there are still many observers that recall the spectacle that the Leonids produced over the southwestern U.S. back 1966, with a zenithal hourly rate topping an estimated 144,000 per hour!

We also have a personal fondness for this shower, as we were fortunate enough to witness the Leonids from the dark desert skies of Kuwait back in 1998. We estimated the shower approached a ZHR of about 900 towards sunrise, as a fireballs seemed to light up the desert once every few seconds.

Created using Stellarium.
The situation at 22:00 UT on November 17th, noting the direction of the Earth’s motion with relation to the predicted peak of the 2014 Leonid stream. Created using Stellarium.

The Leonids have subsided in recent years, and have fallen back below enhanced rates since 2002. Here’s the most recent ZHR levels as per the International Meteor Organization:

2009: ZHR=80.

2010: ZHR=32.

2011: ZHR=22.

2012: ZHR=48.

Note: 2013 the shower was, for the most part, washed out by the Full Moon.

But this year is also special for another reason.

Note that the 2014-2015 season marks the approximate halfway mark to an expected Leonid outburst around 2032. Comet 55P Tempel-Tuttle reaches perihelion on May 20th, 2031, and if activity in the late 1990s was any indication, we expect the Leonids to start picking up again around 2030 onward.

A simulated storm on the morning of November 17th, 2032. Credit: Stellarium.
A simulated Leonid storm on the morning of November 17th, 2032. Credit: Stellarium.

Observing meteors is as simple as laying back and looking up. Be sure to stay warm, and trace the trail of any suspect meteor back to the Sickle to identify it as a Leonid. The Leonid meteors have one of the fastest approach velocities of any meteor stream at 71 kilometres per second, making for quick, fleeting passages in the pre-dawn sky. Brighter bolides may leave lingering smoke trails, and we like to keep a set of binoculars handy to examine these on occasion.

Looking to do some real science? You can document how many meteors you see per hour from your location and send this in to the International Meteor Organization, which tabulates and uses these volunteer counts to characterize a given meteor stream.

Leonids Credit: NASA
The 1997 Leonids as seen from space by the MSX satellite. Credit: NASA/JPL

And taking images of Leonid meteors is as simple as setting your DSLR camera on a tripod and taking long exposure images of the night sky. Be sure to use the widest field of view possible, and aim the camera about 45 degrees away from the radiant to nab meteors in profile. We generally shoot 30 second to 3 minute exposures in series, and don’t be afraid to experiment with manual F-stop/ISO combinations to get the settings just right for the local sky conditions. And be sure to carefully review those shots on the “big screen” afterwards… nearly every meteor we’ve caught in an image has turned up this way.

Don’t miss the 2014 Leonids. Hey, we’re half way to the start of the 2030 “storm years!”

Can You Say Camelopardalids? Observing, Weather Prospects and More for the May 24th Meteor Shower

It could be the best of meteor showers, or it could be the…

Well, we’ll delve into the alternatives here in a bit. For now, we’ll call upon our ever present astronomical optimism and say that one of the best meteor showers of 2014 may potentially be on tap for this weekend.

This is a true wild card event. The meteor shower in question hails from a periodic comet 209P LINEAR discovered in 2004 and radiates from the obscure and tongue-twisting constellation of Camelopardalis.

But whether you call ‘em the “209/P-ids,” the “Camelopardalids,” or simply the “Cams,” this weekend’s meteor shower is definitely one worth watching out for. The excitement surrounding this meteor shower came about when researchers Peter Jenniskens and Esko Lyytinen noticed that the Earth would cross debris streams laid down by the comet in 1803 and 1924. Discovered by the LIncoln Near-Earth Asteroid Research (LINEAR) automated all-sky survey located at White Sands, New Mexico, comet 209P LINEAR orbits the Sun once every 5.1 years. 209P LINEAR passed perihelion at 0.97 AUs from the Sun this month on May 6th.

Starry Night
Looking north from latitude +30N at 7:00 UT on the morning of May 24th. Created using Starry Night.

The meteor shower peaks this coming U.S. Memorial Day weekend on Saturday, May 24th. The expected peak is projected for right around 7:00 Universal Time (UT) which is the early morning hours of 3:00 AM EDT, giving North America a possible front row seat to the event. Estimates for the Zenithal Hourly Rate (ZHR) of the Camelopardalids run the gamut from a mild 30 to an outstanding 400 per hour. Keep in mind, this is a shower that hasn’t been witnessed, and it’s tough enough to forecast the timing and activity of known showers. It’s really a question of how much debris the 1803 and 1924 streams laid down on those undocumented passages. One possible strike against a “meteor storm” similar to the 1998 Leonids that we witnessed from Kuwait is the fact that the “Cams” have never been recorded before. Still, you won’t see any if you don’t try!

Cams
The orientation of the Earth, the day/night terminator, the Sun, Moon and radiant of the meteor shower on May 24th at 7:00 UT. Created by author.

Comet 209P/LINEAR passes 0.055 AUs — about 8.3 million kilometres — from the Earth on May 29th, shining at +11th magnitude and crossing south into the constellation of Leo Minor in late May. Interestingly, it also passes 0.8 degrees from asteroid 2 Pallas on May 26th. Though tiny, comet 209P/LINEAR’s 2014 passage ranks as the 9th closest recorded approach of a comet to the Earth.

209/P LINEAR
A recent image of comet 209/P LINEAR. credit: The Virtual Telescope Project.

The Moon is also at an ideal phase for meteor watching this coming weekend as it presents a waning crescent phase just 4 days from New and rises at around 4:00 AM local.

The expected radiant for the Cams sits at Right Ascension 8 hours and  declination 78 degrees north in the constellation of Camelopardalis, the “camel leopard…” OK, we’ve never seen such a creature, either. (Read “giraffe”). Unfortunately, this puts the radiant just 20 degrees above the northern horizon as seen from +30 degrees north latitude here in Florida at 7:00 UT. Generally speaking, the farther north you are, the higher the radiant will be in the sky and the better your viewing prospects are. Canada and the northern continental United States could potentially be in for a good show. Keep in mind too, the high northern declination of the radiant means that it transits the meridian (crosses upper culmination) a few hours before sunset Friday night at 6 PM local; this means it’ll have an elevation of about 38 degrees above the horizon as seen from 30 degrees north latitude just after sunset. It may well be worth watching for early activity after dusk!

Weather
A look ahead at the cloud cover prospects for the morning of May 24th. Credit: NOAA.

Clouded out or live on the wrong side of the planet to watch the Camelopardalids? Slooh will be carrying a live broadcast of the event starting at 3:00 PM PDT/ 6:00 PM EDT/ 22:00 UT. Also, the folks at the Virtual Telescope Project  will carry two separate webcasts of the event, one featuring the progenitor comet 209P LINEAR starting at 20:00 UT on May 22nd and another featuring the meteor shower itself starting at 5:30 UT on May 24th.

Observing meteors is fun and easy and requires nothing more than a good pair of “mark-1 eyeballs” and patience. And although the radiant may be low to the north, meteors can appear anywhere in the sky. We like to keep a pair of binocs handy to examine any lingering smoke trains left by bright fireballs. Counting the number of meteors you see from your location and submitting this estimate to the International Meteor Organization may help in ongoing efforts to understand this first time meteor shower. And capturing an image of a meteor is as simple as setting a DSLR on a tripod with a wide field of view and taking time exposures of the sky… something you can start practicing tonight.

P_20140518_110518
Our humble meteor observing rig… (Photo by author).

Don’t miss what could well be the astronomical event of the year… I’d love to see a meteor shower named after an obscure constellation such as the #Camelopardalids trending. And we fully expect to start fielding reports of “strange rocks falling from the sky” this week, which the cometary dust that composes a meteor shower isn’t. In fact, Meteorite Man Geoffrey Notkin once noted that no confirmed meteorite fall has ever been linked to a periodic meteor shower.

Don’t miss the celestial show!

-Got pics of the Camelopardalids? Send ‘em to Universe Today. There’s a good chance that we’ll run an after-action photo-round up if the Cams kick it into high gear.

-Read more about the Camelopardalids here in a recent outstanding post by Bob King on Universe Today.

 

Here Comes the Weekend Leonid Meteor Shower!

November 2013 offers a chance to catch a dependable meteor shower, albeit on an off year. The Leonid meteors are set to reach their annual peak this coming weekend on Sunday, November 17th. We say it’s an off-year, but not that it should discourage you from attempting to catch the Leonids this weekend in the early dawn.

Projections for 2013 suggest a twin-peaked maximum, with the first peak arriving on November 17th at 10:00 UT/5:00 AM EST favoring North America, and the second one reaching Earth on the same date six hours later at 16:00 UT/11:00, favoring the central Pacific.

Unfortunately, the Full Moon also occurs the on very date that the Leonids peak at 10:16 AM EST/ 15:16UT, right between the two peaks! This will definitely cut down on the number of meteors you’ll see in the early AM hours.

That’s strike one against the 2013 Leonids. The next is the curious sporadic nature of this shower. Normally a minor shower with a zenithal hourly rate (ZHR) in the range of 10-20 per hour, the Leonids are prone to great storms topping a ZHR of 1,000+ every 33 years. We last experienced such an event in 1998 and 1999, and we’re now approaching the mid-point lull between storms in the 2014-2016 time frame.

An early Leonid meteor captured last week from the United Kingdom Meteor Observing Network's Church Crookham station. (Credit: UKMON/Peter-Campbell-Burns).
An early Leonid meteor captured last week from the United Kingdom Meteor Observing Network’s Church Crookham station. (Credit: UKMON/Peter-Campbell-Burns).

Still, this is one shower that’s always worth monitoring. The source of the Leonids is Comet 55p/Tempel-Tuttle, which is on a 33-year orbit and is due to reach perihelion again in 2031.

Note that the Leonids have also continued to show enhanced activity in past years even when the Moon was a factor:

2012- ZHR=47.

2011- ZHR=22, Moon=8% waning gibbous.

2010- ZHR=40, 86% waxing gibbous.

2009- ZHR=79.

2008-70 ZHR=72% waning gibbous

We even managed to observe the Leonid meteors from Vail, Arizona in 2002 and 2005, on years when the Moon was nearly Full.

Now, for the good news. The Leonids have a characteristic r value of 2.5, meaning that they produce a higher than normal ratio of fireballs. About 50-70% of Leonid meteors are estimated to leave persistent trains, a good reason to keep a pair of binoculars handy. And hey, at least the 2013 Leonids peak on the weekend, and there’s always comet’s ISON, X1 LINEAR, 2P/Encke and R1 Lovejoy to track down to boot!

A 2002 Leonid captured over Redstone Arsenal, Alabama. (Credit: NASA/MSFC/MEO/Bill Cooke).
A 2002 Leonid captured over Redstone Arsenal, Alabama. (Credit: NASA/MSFC/MEO/Bill Cooke).

Here’s a few tips and tricks that you can use to “beat the Moon” on your Leonid quest. One is to start observing now, on the moonless mornings leading up to the 17th. You’ll always see more Leonid meteors past local midnight as the radiant rises to the northeast. This is because you’re standing on the portion of the Earth turning forward into the meteor stream. Remember, the front windshield of your car (the Earth) always collects the most bugs (meteors). Observers who witnessed the 1966 Leonid storm reported a ZHR in excess of thousands per hour, producing a Star Trek-like effect of the Earth plowing through a “snowstorm” of meteors!

The radiant of the Leonids sits in the center of the backwards question mark asterism of the “Sickle” in the astronomical constellation Leo (hence name of the shower).

You can also improve your prospects for seeing meteors by blocking the Moon behind a building or hill. Though the Leonids will appear to radiate from Leo, they can appear anywhere in the sky. Several other minor showers, such as the Taurids and the Monocerotids, are also active in November.

Meteor shower photography is simple and can be done with nothing more than a DSLR camera on a tripod. This year, you’ll probably want to keep manual exposures short due to the Full Moon and in the 20 seconds or faster range. Simply set the camera to a low f-stop/high ISO setting and a wide field of view and shoot continuously. Catching a meteor involves luck and patience, and be sure to examine the frames after a session; every meteor I’ve caught on camera went unnoticed during observation! Don’t be afraid to experiment with different combinations to get the sky conditions just right. Also, be sure to carry and extra set of charged camera batteries, as long exposures combined with chilly November mornings can drain DSLR batteries in a hurry!

A Woodcut print depicting the 1933 Leonids as seem from Niagara Falls. (Wikimedia Commons image in the Public Domian).
A Woodcut print depicting the 1933 Leonids as seem from Niagara Falls. (Wikimedia Commons image in the Public Domain).

The Leonids certainly have a storied history, dating back to before meteors where understood to be dust grains left by comets. The 1833 Leonids were and awesome and terrifying spectacle to those who witnessed them up and down the eastern seaboard of the U.S. In fact, the single 1833 outburst has been cited as contributing to the multiple religious fundamentalist movements that cropped up in the U.S. in the 1830s.

We witnessed the 1998 Leonids from the deserts of Kuwait while stationed at Al Jabber Air Base. It was easily one of the best meteor displays we ever saw, with a ZHR reaching in access of 500 per hour before dawn. It was intense enough that fireballs behind us would often light up the foreground like camera flashes!

Reporting rates and activity for meteor showers is always fun and easy to do — its real science that you can do using nothing more than a stopwatch and your eyes. The International Meteor Association is always looking for current meteor counts from observers. Data goes towards refining our understanding and modeling of meteor streams and future predictions. The IMO should also have a live ZHR graph for the 2013 Leonids running soon.

Have fun, stay warm, send those Leonid captures in to Universe Today, and don’t forget to tweet those meteors to #Meteorwatch!