Viking: Remembering Humanity’s First Successful Mission On Mars Surface

Taken by the Viking 1 lander shortly after it touched down on Mars, this image is the first photograph ever taken from the surface of Mars. It was taken on July 20, 1976. The primary objectives of the Viking mission, which was composed of two spacecraft, were to obtain high-resolution images of the Martian surface, characterize the structure and composition of the atmosphere and surface and search for evidence of life on Mars. Credit: NASA
Taken by the Viking 1 lander shortly after it touched down on Mars, this image is the first photograph ever taken from the surface of Mars. The primary objectives of the Viking mission was to obtain high-resolution images of the Martian surface, characterize the structure and composition of the atmosphere and surface and search for evidence of life on Mars. Credit: NASA

July 20. Sound like a familiar date? If you guessed that’s when we first set foot on the Moon 47 years ago, way to go! But it’s also the 40th anniversary of Viking 1 lander, the first American probe to successfully land on Mars.

The Russians got there first on December 2, 1971 when their Mars 3 probe touched down in the Mare Sirenum region. But transmissions stopped just 14.5 seconds later, only enough time for the crippled lander to send a partial and garbled photo that unfortunately showed no identifiable features.

The late, great Carl Sagan stands next to a model of the Viking lander. Credit: NASA
The late, great Carl Sagan stands next to a model of the Viking lander. Credit: NASA

Viking 1 touched down on July 20, 1976 in Chryse Planitia, a smooth, circular plain in Mars’ northern equatorial region and operated for six years, far beyond the original 90 day mission. Its twin, Viking 2, landed about 4,000 miles (6,400 km) away in the vast northern plain called Utopia Planitia several weeks later on September 3. Both were packaged inside orbiters that took pictures of the landing sites before dispatching the probes.

The first color photo taken of the Martian surface by the Viking 1 lander on July 21, 1976. The rock strewn landscape is a familiar one seen in photos taken by many landers since. Credit: NASA
The first color photo taken of the Martian surface by the Viking 1 lander on July 21, 1976. The rock strewn landscape is a familiar one seen in photos taken by many landers since. Credit: NASA

Viking 1 was originally slated to land on July 4th to commemorate the 200th year of the founding of the United States. Some of you may remember the bicentennial celebrations underway at the time. Earlier photos taken by Mariner 9 helped mission controllers pick what they thought was a safe landing site, but when the Viking 1 orbiter arrived and took a closer look, NASA deemed it too bouldery for a safe landing, so they delayed the the probe’s arrival until a safer site could be chosen. Hence the July 20th touchdown date.

My recollection at the time was that that particular date was picked to coincide with the first lunar landing.

I’ll never forget the first photo transmitted from the surface. I had started working at the News Gazette in Champaign, Ill. earlier that year in the photo department. On July 20 I joined the wire editor, a kindly. older gent named Raleigh, at the AP Photofax machine and watched the black and white image creep line-by-line from the machine. Still damp with ink, I lifted the sodden sheet into my hands, totally absorbed. Two things stood out: how incredibly sharp the picture was and ALL THOSE ROCKS!  Mars looked so different from the Moon.

The Viking 1 Lander sampling arm created a number of deep trenches as part of the surface composition and biology experiments on Mars. The digging tool on the sampling arm (at lower center) could scoop up samples of material and deposit them into the appropriate experiment. Some holes were dug deeper to study soil which was not affected by solar radiation and weathering. The trenches in this ESE looking image are in the "Sandy Flats" area of the landing site at Chryse Planitia. Credit: NASA
The Viking 1 Lander sampling arm created a number of deep trenches as part of the surface composition and biology experiments on Mars. The digging tool on the sampling arm (at lower center) could scoop up samples of material and deposit them into the appropriate experiment. Some holes were dug deeper to study soil which was not affected by solar radiation and weathering. Credit: NASA

One day later, Viking 1 returned the first color photo from the surface and continued to operate, taking photos and doing science for 2,307 days until November 11, 1982, a record not broken until May 2010 by NASA’s Opportunity rover. It would have continued humming along for who knows how much longer were it not for a faulty command sent by mission control that resulted in a permanent loss of contact.

The first Mars panorama taken in Chryse Plantia by Viking 1. Credit: NASA
The first Mars panorama taken in Chryse Plantia by Viking 1. Click to supersize. Credit: NASA

Viking 2 soldiered on until its batteries failed on April 11, 1980. Both landers characterized the Martian weather and radiation environment, scooped up soil samples and measured their elemental composition and send back lots of photos including the first Martian panoramas.

Each lander carried three instruments designed to look for chemical or biological signs of living or once-living organisms. Soil samples scooped up by the landers’ sample arms were delivered to three experiments in hopes of detecting organic compounds and gases either consumed or released by potential microbes when they were treated with nutrient solutions. The results from both landers were similar: neither suite of experiments found any organic (carbon-containing) compounds nor any definitive signs of Mars bugs.

The first color picture taken by Viking 2 on the Martian surface shows a rocky reddish surface much like that seen by Viking 1 more than 4000 miles away. Credit: NASA
The first color picture taken by Viking 2 on the Martian surface shows a rocky reddish surface much like that seen by Viking 1 more than 4,000 miles away. Credit: NASA

Not that there wasn’t some excitement. The Labeled Release experiment (LC) actually did give positive results. A nutrient solution was added to a sample of Martian soil. If it contained microbes, they would take in the nutrients and release gases. Great gobs of gas were quickly released! As if the putative Martian microbes only needed a jigger of  NASA’s chicken soup to find their strength. But the complete absence of organics in the soil made scientists doubtful that life was the cause.  Instead it was thought that some inorganic chemical reaction must be behind the release. Negative results from the other two experiments reinforced their pessimism.

Frost on Utopia Planitia photographed by Viking 2. Credit NASA
Frost on Utopia Planitia photographed by Viking 2. Click to visit NASA’s Viking image archive (not to miss!) Credit NASA

Fast forward to 2008 when the Phoenix lander detected strongly oxidizing perchlorates originating from the interaction of strong ultraviolet light from the Sun with soils on the planet’s surface. Since Mars lacks an ozone layer, perchlorates may not only be common but also responsible for destroying much of Mars’ erstwhile organic bounty. Other scientists have reexamined the Viking LC data in recent years and concluded just the opposite, that the gas release points to life.


A fun, “period” movie about the Viking Mission to Mars

Seems to me it’s high time we should send a new suite of experiments designed to find life. Then again, maybe we won’t have to. The Mars 202o Mission will cache Martian rocks for later pickup, so we can bring pieces of Mars back to Earth and perform experiments to our heart’s content.

Teasing the Galactic Ghoul, Past and Present

Launch. It’s the part of spaceflight that is always the most fraught with peril, as your precious and delicate scientific package is encapsulated on top of tons of explosives, the fuze is lit, and the whole package hurls spaceward.

As noted by Bob King earlier last week on Universe Today, the European Space Agency’s ExoMars Trace Gas Orbiter underwent just such an ordeal on March 14th, as it broke the surly bonds atop a Russian Proton rocket from the Baikonur Cosmodrome, and headed towards the Red Planet with the Schiaparelli Lander affixed snug to its side. The spacecraft may have very nearly suffered a disaster that would’ve left it literally dead in space.

Don’t worry; the ExoMars Trace Gas Orbiter is OK and safely in a heliocentric orbit now, en route for an orbital insertion around the Red Planet on October 19th, 2016. But our robotic ambassadors haven’t always been so lucky.

The Road to the Red Planet

Launching for Mars is a complex odyssey. Unlike U.S. Mars missions such as MAVEN and Curiosity, which typically launch atop an Atlas V rocket and head directly into solar orbit after launch, Russian Proton rocket launches initially enter a looping elliptical orbit around the Earth, and require a series of successive engine burns to raise the payload’s orbit for a final injection headed to Mars.

All was well as the upper stages did their job, four burns were performed, and the ExoMars Trace Gas Orbiter phoned home indicating it was in good health afterwards.

It’s what happened next that gave planners a start, and is still the source of a minor controversy.

While Russian sources tracked the Briz-M upper stage and say it worked as planned, observatories based in the southern hemisphere imaged the departure of ExoMars noted about half a dozen fragments following it. Having done its job, the Briz-M stage was to execute a maneuver after separation, placing it into a ‘graveyard’ solar orbit. Not only would this clear ExoMars on its trajectory, but the Red Planet itself.

Anatoly Zak notes in a recent article for Popular Mechanics online that the Briz-M upper stage isn’t subjected to strict sterilization measures, though its unclear if it too will reach Mars.

Solar orbit is littered with discarded boosters and spacecraft, going all the way back to the first mission to fly past the Moon and image the lunar farside, the Soviet Union’s Luna 3 in 1959. Some of these even come back on occasion to revisit the Earth as temporary moonlets, such as the Apollo 12 booster in 2002 and the Chang’e-2 booster in 2013.

And there is nothing more that the fabled ‘Galactic Ghoul’ loves than tasty Mars-bound spacecraft. Though the ExoMars Trace Gas Orbiter is in its expected trajectory to Mars as planned, it seems that the the Briz-M upper stage may have exploded seconds after spacecraft separation.

Image credit:
Encapsulation of the ExoMars Trace Gas Orbiter and Shiaperelli atop the Briz-M upper stage. Image credit: ESA/B. Bethge

The incident is eerily similar to the fate that befell the Phobos-Grunt sample return mission. Also launched from Baikonur, the spacecraft was stranded in Earth orbit after its Fregat upper stage failed to do its job. Phobos-Grunt reentered on January 15th, 2012 just over two months after launch, taking its container of Planetary Society-funded tardigrades scheduled to make the round trip to Mars permanently to the bottom of the Pacific Ocean instead.

The Mars 96 mission also failed to leave Earth orbit, and reentered over South America on November 16th, 1996 with a radioactive payload meant for power surface penetrators bound for the Red Planet.

The Russians haven’t had good luck with Mars landers, though they fared better landing on Venus with their Venera program… and had at least one spare Venusian Death Probe crash on Earth and fight the Six Million Dollar Man back in the 1970’s TV show, to boot.

The U.S. has actually had pretty good luck on Mars, having only lost the Mars Polar Lander for seven successful landing attempts. If successful later this year, Schiaparelli will be a first landing on Mars for any other space agency other than NASA.

Image credit:
The first image from the surface of Mars? The only picture returned from Russia’s Mars 3 spacecraft, which fell silent 14 seconds after touchdown. Image credit: The Soviet Academy of Sciences.

And you’ll be able to explore Mars for yourself shortly, as opposition season for the Red Planet is right around the corner. Opposition for 2016 occurs on May 22nd, and we’re in for a cycle of favorable oppositions leading up to one in 2018 that’s very nearly as favorable as the historic 2003 opposition.

Space is hard, but the ExoMars Trace Gas Orbiter seems to be made of still harder stuff, the likes of which no explosion in space can kill.

Onward to Mars!

Soviet Lander Spotted by Mars Orbiter

On May 28, 1971, the Soviet Union launched the Mars 3 mission which, like its previously-launched and ill-fated sibling Mars 2, consisted of an orbiter and lander destined for the Red Planet. Just over six months later on December 2, 1971, Mars 3 arrived at Mars — five days after Mars 2 crashed. The Mars 3 descent module separated from the orbiter and several hours later entered the Martian atmosphere, descending to the surface via a series of parachutes and retrorockets. (Sound familiar?) Once safely on the surface, the Mars 3 lander opened its four petal-shaped covers to release the 4.5-kg PROP-M rover contained inside… and after 20 seconds of transmission, fell silent. Due to unknown causes, the Mars 3 lander was never heard from or seen again.

Until now.

These images show what might be hardware from the Soviet Union's 1971 Mars 3 lander ( NASA/JPL-Caltech/Univ. of Arizona)
These images show what might be hardware from the Soviet Union’s 1971 Mars 3 lander (NASA/JPL-Caltech/Univ. of Arizona)

The set of images above shows what might be hardware from the 1971 Soviet Mars 3 lander, seen in a pair of images from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.

While following news about Mars and NASA’s Curiosity rover, Russian citizen enthusiasts found four features in a five-year-old image from Mars Reconnaissance Orbiter that resemble four pieces of hardware from the Mars 3 mission: the parachute, heat shield, terminal retrorocket and lander. A follow-up image by the orbiter from last month shows the same features.

“Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out.”

– Alfred McEwen, HiRISE Principal Investigator

The Mars 3 lander (NSSDC)
The Mars 3 lander (NSSDC)

Vitali Egorov from St. Petersburg, Russia, heads the largest Russian Internet community about Curiosity. His subscribers did the preliminary search for Mars 3 via crowdsourcing. Egorov modeled what Mars 3 hardware pieces should look like in a HiRISE image, and the group carefully searched the many small features in this large image, finding what appear to be viable candidates in the southern part of the scene. Each candidate has a size and shape consistent with the expected hardware, and they are arranged on the surface as expected from the entry, descent and landing sequence.

“I wanted to attract people’s attention to the fact that Mars exploration today is available to practically anyone,” Egorov said. “At the same time we were able to connect with the history of our country, which we were reminded of after many years through the images from the Mars Reconnaissance Orbiter.”

The predicted Mars 3 landing site was at latitude 45 degrees south, longitude 202 degrees east, in Ptolemaeus Crater. HiRISE acquired a large image at this location in November 2007, and promising candidates for the hardware from Mars 3 were found on Dec. 31, 2012.

Candidate features of the Mars 3 retrorockets (top) and lander (bottom)
Candidate features of the Mars 3 retrorockets (top) and lander (bottom)

The candidate parachute is the most distinctive feature in the images (seen above at top.) It is an especially bright spot for this region, about 8.2 yards (7.5 meters) in diameter.

The parachute would have a diameter of 12 yards (11 meters) if fully spread out over the surface, so this is consistent.

“Together, this set of features and their layout on the ground provide a remarkable match to what is expected from the Mars 3 landing, but alternative explanations for the features cannot be ruled out,” said HiRISE Principal Investigator Alfred McEwen of the University of Arizona, Tucson. “Further analysis of the data and future images to better understand the three-dimensional shapes may help to confirm this interpretation.”

Source: NASA/JPL