Cosmic Dust Could Spread Life from World to World Across the Galaxy

Could life spread throughout the galaxy on tiny grains of dust? It would be a perilous journey, but new research shows its possible and calculates how long it would take to spread. Image Credit: ESO

Does life appear independently on different planets in the galaxy? Or does it spread from world to world? Or does it do both?

New research shows how life could spread via a basic, simple pathway: cosmic dust.

Continue reading “Cosmic Dust Could Spread Life from World to World Across the Galaxy”

Nearby Supernovae Were Essential to Life on Earth

Distant past supernovae could be linked by cosmic ray particles to climate change on Earth and changes in biodiversity. Courtesy: Henrik Svensmark, DTU Space.
Distant past supernovae could be linked by cosmic ray particles to climate change on Earth and changes in biodiversity. Courtesy: Henrik Svensmark, DTU Space.

It’s almost impossible to comprehend a supernova explosion’s violent, destructive power. An exploding supernova can outshine its host galaxy for a few weeks or even months. That seems almost impossible when considering that a galaxy can contain hundreds of billions of stars. Any planet too close to a supernova would be completely sterilized by all the energy released, its atmosphere would be stripped away, and it may even be shredded into pieces.

But like many things in nature, it all comes down to dose.

A certain amount of supernova activity might be necessary for life to exist.

Continue reading “Nearby Supernovae Were Essential to Life on Earth”

The Early Earth was Really Horrible for Life

The Blue Marble image of Earth from Apollo 17. Credit: NASA

Earth has had a long and complex history since its formation roughly 4.5 billion years ago. Initially, it was a molten ball, but eventually, it cooled and became differentiated. The Moon formed from a collision between Earth and a protoplanet named Theia (probably), the oceans formed, and at some point in time, about 4 billion years ago, simple life appeared.

Those are the broad strokes, and scientists have worked hard to fill in a detailed timeline of Earth’s history. But there are a host of significant and poorly-understood periods in the timeline, lined up like targets for the scientific method. One of them concerns UV radiation and its effects on early life.

A new study probes the effects of UV radiation on Earth’s early life-forms and how it might have shaped our world.

Continue reading “The Early Earth was Really Horrible for Life”

When Did Photosynthesis Begin?

Sometime around 2.4 billion years ago, a nascent planet Earth underwent one of the most dramatic changes in its history. Known as the Great Oxidation Event, this period saw Earth’s atmosphere suddenly bloom with (previously scarce) molecular oxygen. The rapid alteration of the atmosphere’s composition was nothing short of a cataclysm for some early lifeforms (at the time, mostly simple celled prokaryotes). Anaerobic species – those that dwell in oxygen-free environments – experienced a near extinction-level event. But the Great Oxidation was also an opportunity for other forms of life to thrive. Oxygen in the atmosphere tempered the planetary greenhouse effect, turning methane into the less potent carbon dioxide, and ushering in a series of ice ages known as the Huronian Glaciation. But oxygen is an energy-rich molecule, and it also bolstered diversity and activity on the planet, as a powerful new source of fuel for living organisms.

The cause of this dramatic event? The tiniest of creatures: little ocean-dwelling cyanobacteria (sometimes known as blue-green algae) that had developed a new super-power never before seen on planet Earth: photosynthesis. This unique ability – to gain energy from sunlight and release oxygen as a waste product – was a revolutionary step for so small a critter. It quite literally changed the world.

Continue reading “When Did Photosynthesis Begin?”

The Meteor Impact that Wiped Out the Dinosaurs Created a Vast Underground Hydrothermal System

A Three-dimensional cross-section of the hydrothermal system in the Chicxulub impact crater and its seafloor vents. The system has the potential for harboring microbial life. Illustration by Victor O. Leshyk for the Lunar and Planetary Institute.

The Chicxulub impact event was an enormous catastrophe that left a huge imprint on the Earth’s surface. Not only did it cause the mass extinction of the dinosaurs, it left a crater 180 km (112 miles) in diameter, and deposited a worldwide layer of concentrated iridium in the Earth’s crust.

But a new study shows that the impact also left its mark deep underground, in the form of a vast hydrothermal system that modified a massive chunk of the Earth’s crust.

Continue reading “The Meteor Impact that Wiped Out the Dinosaurs Created a Vast Underground Hydrothermal System”

Science Fiction Might Be Right After All. There Might Be Breathable Atmospheres Across the Universe

This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA
This view of Earth’s horizon was taken by an Expedition 7 crewmember onboard the International Space Station, using a wide-angle lens while the Station was over the Pacific Ocean. A new study suggests that Earth's water didn't all come from comets, but likely also came from water-rich planetesimals. Credit: NASA

The last few years has seen an explosion of exoplanet discoveries. Some of those worlds are in what we deem the “habitable zone,” at least in preliminary observations. But how many of them will have life-supporting, oxygen-rich atmospheres in the same vein as Earth’s?

A new study suggests that breathable atmospheres might not be as rare as we thought on planets as old as Earth.

Continue reading “Science Fiction Might Be Right After All. There Might Be Breathable Atmospheres Across the Universe”

Researchers May Have Found the Missing Piece of Evidence that Explains the Origins of Life

Structure of DNA
Deoxyribonucleic acid (DNA) is the genetic material for all known life on Earth. DNA is a biopolymer consisting of a string of subunits. The subunits consist of nucleotide base pairs containing a purine (adenine A, or guanine G) and a pyrimidine (thymine T, or cytosine C). DNA can contain nucleotide base pairs in any order without its chemical properties changing. This property is rare in biopolymers, and makes it possible for DNA to encode genetic information in the sequence of its base pairs. This stability is due to the fact that each base pair contains phosphate groups (consisting of phosphorus and oxygen atoms) on the outside with a net negative charge. These repeated negative charges make DNA a polyelectrolyte. Computational genomics researcher Steven Benner has hypothesized that alien genetic material will also be a polyelectrolyte biopolymer, and that chemical tests could therefore be devised to detect alien genetic molecules. Credit: Zephyris

The question of how life first emerged here on Earth is a mystery that continues to elude scientists. Despite everything that scientists have learned from the fossil record and geological history, it is still not known how organic life emerged from inorganic elements (a process known as abiogenesis) billions of years ago.

One of the more daunting aspects of the mystery has to do with peptides and enzymes, which fall into something of a “chicken and egg” situation. Addressing this, a team of researchers from the University College London (UCL) recently conducted a study that effectively demonstrated that peptides could have formed in conditions analogus to primordial Earth.

Continue reading “Researchers May Have Found the Missing Piece of Evidence that Explains the Origins of Life”

Without the Impact that Formed the Moon, We Might Not Have Life on Earth

The chemicals that made life possible on Earth may have come from another planet that collided with Earth, forming the Moon. Image Credit: Rice University
The chemicals that made life possible on Earth may have come from another planet that collided with Earth, forming the Moon. Image Credit: Rice University

The Earth wasn’t formed containing the necessary chemicals for life to begin. One well-supported theory, called the “late veneer theory”, suggests that the volatile chemicals needed for life arrived long after the Earth formed, brought here by meteorites. But a new study challenges the late veneer theory.

Evidence shows that the Moon was created when a Mars-sized planet named Theia collided with the Earth. The impact created a debris ring out of which the Moon formed. Now, this new study says that same impact may have delivered the necessary chemicals for life to the young Earth.


Continue reading “Without the Impact that Formed the Moon, We Might Not Have Life on Earth”

More Evidence That Comets May Have Brought Life to Earth

Halleys Comet, as seen in May 1986. Credit and copyright: Bob King.

The idea of panspermia — that life on Earth originated from comets or asteroids bombarding our planet — is not new. But new research may have given the theory a boost. Scientists from Japan say their experiments show that early comet impacts could have caused amino acids to change into peptides, becoming the first building blocks of life. Not only would this help explain the genesis of life on Earth, but it could also have implications for life on other worlds.

Dr. Haruna Sugahara, from the Japan Agency for Marine-Earth Science and Technology in Yokahama, and Dr. Koichi Mimura, from Nagoya University said they conducted “shock experiments on frozen mixtures of amino acid, water ice and silicate (forsterite) at cryogenic condition (77 K),” according to their paper. “In the experiments, the frozen amino acid mixture was sealed into a capsule … a vertical propellant gun was used to [simulate] impact shock.”

They analyzed the post-impact mixture with gas chromatography, and found that some of the amino acids had joined into short peptides of up to 3 units long (tripeptides).

Based on the experimental data, the researchers were able to estimate that the amount of peptides produced would be around the same as had been thought to be produced by normal terrestrial processes (such as lighting storms or hydration and dehydration cycles).

Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL
Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL
“This finding indicates that comet impacts almost certainly played an important role in delivering the seeds of life to the early Earth,” said Sugahara. “It also opens the likelihood that we will have seen similar chemical evolution in other extraterrestrial bodies, starting with cometary-derived peptides.”

The earliest known fossils on Earth are from about 3.5 billion years ago and there is evidence that biological activity took place even earlier. But there’s evidence that early Earth had little water and carbon-based molecules on the Earth’s surface, so how could these building blocks of life delivered to the Earth’s surface so quickly? This was also about the time of the Late Heavy Bombardment, and so the obvious answer could be the collision of comets and asteroids with the Earth, since these objects contain abundant supplies of both water and carbon-based molecules.

A view of NASA's Deep Impact probe colliding with comet Tempel 1, captured by the Deep Impact flyby spacecraft's high-resolution instrument.
A view of NASA’s Deep Impact probe colliding with comet Tempel 1, captured by the Deep Impact flyby spacecraft’s high-resolution instrument.

Space missions to comets are helping to confirm this possibility. The 2004 Stardust mission found the amino acid when it collected particles from Comet Wild 2. When NASA’s Deep Impact spacecraft crashed into Comet Tempel 1 in 2005, it discovered a mixture of organic and clay particles inside the comet. One theory about the origins of life is that clay particles act as a catalyst, allowing simple organic molecules to get arranged into more and more complex structures.

The news from the current Rosetta mission to comet 67P/Churyumov-Gerasimenko also indicates that comets are a rich source of materials, and more discoveries are likely to be forthcoming from that mission.

Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com
Jets of gas and dust are blasting from the active neck of comet 67P/Churyumov-Gerasimenko in this photo mosaic assembled from four images taken on 26 September 2014 by the European Space Agency’s Rosetta spacecraft at a distance of 26.3 kilometers (16 miles) from the center of the comet. Credit: ESA/Rosetta/NAVCAM/Marco Di Lorenzo/Ken Kremer/kenkremer.com

“Two key parts to this story are how complex molecules are initially generated on comets and then how they survive/evolve when the comet hits a planet like the Earth,” said Professor Mark Burchell from the University of Kent in the UK, commenting on the new research from Japan. “Both of these steps can involve shocks which deliver energy to the icy body… building on earlier work, Dr. Sugahara and Dr. Mimura have shown how amino acids on icy bodies can be turned into short peptide sequences, another key step along the path to life.”

“Comet impacts are normally associated with mass extinction on Earth, but this works shows that they probably helped kick-start the whole process of life in the first place,” said Sugahara. “The production of short peptides is the key step in the chemical evolution of complex molecules. Once the process is kick-started, then much less energy is needed to make longer chain peptides in a terrestrial, aquatic environment.”

The scientists also indicated that similar “kickstarting” could have happened in other places in our Solar System, such as on the icy moons Europa and Enceladus, as they likely underwent a similar comet bombardment.

Sugahara and Mimura presented their findings at the Goldschmidt geochemistry conference in Prague, going on this week.