Rare Images of Red Sprites Captured at ESO

At the ESO’s observatories located high in the Atacama Desert of Chile, amazing images of distant objects in the Universe are captured on a regular basis. But in January 2015, ESO photo ambassador Petr Horálek captured some amazing photos of much closer phenomena: red sprites flashing in the atmosphere high above distant thunderstorms.

The photo above was captured from ESO’s Paranal Observatory. A few days earlier during the early morning hours of Jan. 20 Petr captured another series of sprites from the La Silla site, generated by a storm over Argentina over 310 miles (500 km) away.

Sprites spotted from ESO's La Silla observatory by Petr Horálek
Sprites spotted from ESO’s La Silla observatory by Petr Horálek (left horizon)

So-named because of their elusive nature, sprites appear as clusters of red tendrils above a lighting flash, often extending as high as 55 miles (90 km) into the atmosphere. The brightest region of a sprite is typically seen at altitudes of over 40-45 miles (65-75 km).

Because they occur high above large storms, only last for fractions of a second and emit light in the portion of the spectrum to which our eyes are the least sensitive, observing sprites is notoriously difficult.

Read more: On the Hunt for High-Speed Sprites

These furtive atmospheric features weren’t captured on camera until 1989. Continuing research has since resulted in more images, including some from the International Space Station. When they are spotted, sprites – and their lower-altitude relatives blue jets – can appear as bright as moderate aurorae and have also been found to emit radio noise. It has even been suggested that looking for sprite activity on other planets could help identify alien environments that are conducive to life.

Find out more about sprite research from the University of Alaska Fairbanks, and check out the PBS NOVA program “At the Edge of Space” below about a sprite hunt in the skies over Denver, CO conducted by a team of American scientists and Japanese filmmakers.

Source: ESO

What Is This Empty Hole In Space?

What may appear at first glance to be an eerie, empty void in an otherwise star-filled scene is really a cloud of cold, dark dust and molecular gas, so dense and opaque that it obscures the distant stars that lie beyond it from our point of view.

Similar to the more well-known Barnard 68, “dark nebula” LDN 483 is seen above in an image taken by the MPG/ESO 2.2-meter telescope’s Wide Field Imager at the La Silla Observatory in Chile.

While it might seem like a cosmic no-man’s-land, no stars were harmed in the making of this image – on the contrary, dark nebulae like LDN 483 are veritable maternity wards for stars. As their cold gas and dust contracts and collapses new stars form inside them, remaining cool until they build up enough density and gravity to ignite fusion within their cores. Then, shining brightly, the young stars will gradually blast away the remaining material with their outpouring wind and radiation to reveal themselves to the galaxy.

The process may take several million years, but that’s just a brief flash in the age of the Universe. Until then, gestating stars within LDN 483 and many other clouds like it remain dim and hidden but keep growing strong.

Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)
Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)

Located fairly nearby, LDN 483 is about 700 light-years away from Earth in the constellation Serpens.

Source: ESO

Zodiacal Light Over ESO’s La Silla Observatory

We don’t put much stock in astrology or horoscopes here at Universe Today, but there’s one thing related to the zodiac that’s all science and no superstition: zodiacal light, captured here in a gorgeous photo by astronomer Alan Fitzsimmons above ESO’s La Silla Observatory.

Created by sunlight reflected off fine particles of dust concentrated inside the plane of the Solar System, zodiacal light appears as a diffuse, hazy band of light visible in dark skies stretching away from a recently-set Sun (or before the Sun is about to rise).

The Moon is located just outside the frame of this picture, bathing the observatory in an eerie light that is reflected off the clouds below.

The La Silla Observatory is located at the outskirts of the Chilean Atacama Desert at an altitude of 2400 meters (7,900 feet). Like other observatories in this area, La Silla is located far from sources of light pollution and, like ESO’s Paranal Observatory, it has some of the darkest night skies on the Earth.

The dome in the foreground, just to the right, is the Swiss 1.2-metre Leonhard Euler Telescope named in honor of the famous Swiss mathematician Leonhard Euler (1707–83).

Image credit: A. Fitzsimmons/ESO

A Cosmic Seagull’s Star-Studded Wings


Bright stars and vast clouds of dust and gas illuminate the “wings” of the Seagull Nebula (ESO)

These glowing red clouds are just a small part of the wings of an enormous bird — the Seagull Nebula, a band of gas and dust 3,400 light-years away that shines from UV light radiating from hot newborn stars.

This image was made from observations with the MPG/ESO 2.2-meter telescope at the ESO La Silla Observatory in Chile. See the full wide-field view of the Seagull Nebula below.


Wide-field view of the entire Seagull Nebula (IC 2177)

Wide-field view of the Seagull Nebula. The white box is the area seen at top. North is up in this view. (ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin)

The Seagull Nebula (IC 2177) is a vaguely bird-shaped region of gas and dust clouds located between the constellations Canis Major and Monoceros. The detail image at the top of this article is located along the upper edge of the gull’s lower wing, and is separately cataloged as Sharpless 2-296.

The bright red glow is the result of ionized hydrogen energized by the radiation from the several hot, bright young stars seen in the image. H II regions like the Seagull Nebula are signs of ongoing star formation in a galaxy — in a spiral galaxy like our Milky Way, these dust clouds are scattered throughout the arms. In fact, it was observations of such nebulae in the 1950s by Stewart Sharpless that helped determine the spiral structure of the Galaxy.

The silhouettes of dark, dense clouds closer to Earth block the red hydrogen glow from more distant areas of Sharpless 2-296.

Read more on the ESO site here.

eso1306b

Location of the Seagull Nebula (ESO, IAU and Sky & Telescope)

Makemake’s Mysteriously Missing Atmosphere

Artist’s impression of the surface of Makemake, a dwarf planet beyond Pluto (ESO/L. Calçada/Nick Risinger)

It turns out there’s no air up there: the distant dwarf planet Makemake is surprisingly lacking in an atmosphere, according to findings made by astronomers using telescopes at ESO’s La Silla and Paranal observatories.

An international team of astronomers used the mountaintop telescopes to observe Makemake as it passed in front of a faint background star in April 2011, a brief stellar occultation that lasted only about a minute. By watching how the starlight was blotted out by Makemake, measurements could be made of the dwarf planet’s size, mass and atmosphere — or, in this case, its lack thereof… a finding which surprised some scientists.

“As Makemake passed in front of the star and blocked it out, the star disappeared and reappeared very abruptly, rather than fading and brightening gradually. This means that the little dwarf planet has no significant atmosphere,” said team leader José Luis Ortiz of the Instituto de Astrofísica de Andalucía in Spain. “It was thought that Makemake had a good chance of having developed an atmosphere — that it has no sign of one at all shows just how much we have yet to learn about these mysterious bodies.”

First discovered in 2005, Makemake is an icy dwarf planet about 2/3 the diameter of Pluto — and 19 AU further from the Sun (but not nearly as far as the larger Eris, which is over 96 AU away.) It was thought that Makemake might have a tenuous, seasonal atmosphere similar to what has been found on Pluto, but it now appears that it does not… at least not in any large-scale, global form.

Due to its small size, sheer distance and apparent lack of moons, making scientific observations of Makemake has been a challenge for astronomers. The April 2011 occultation allowed measurements to be made — even if only for a minute — that weren’t possible before, including first-ever calculations of the dwarf planet’s density and albedo.

As it turns out, Makemake’s albedo is about 0.77 — comparable to that of dirty snow… a reflectivity higher than Pluto’s but lower than that of Eris. Its density is estimated to be 1.7 ± 0.3 g/cm³, indicating a composition of mostly ice with some rock.

Our new observations have greatly improved our knowledge of one of the biggest [icy bodies], Makemake — we will be able to use this information as we explore the intriguing objects in this region of space further,” said Ortiz.

Read more on the ESO release here.

The team’s research was presented in a paper “Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation” to appear in the November 22, 2012 issue of the journal Nature.

Inset image: Makemake imaged by Hubble in 2006. (NASA/JPL-Caltech)

Take a Gander at a Cosmic Gull

The head and “eye” of the Seagull Nebula (ESO)

This colorful new image from ESO’s La Silla Observatory highlights the heart of a shining stellar nursery located between the constellations Monoceros and Canis Major. Officially named Sharpless 2-292, the cloud of gas and dust forms the “head” of the Seagull Nebula (IC 2177) and gets its glow from the energy emitted by the young, bright star within its “eye”.


A wide-angle image of the Seagull Nebula shows the soaring birdlike shape that gives it its nickname. The cloud seen above forms the gull’s head.

A wide-field view of the Seagull Nebula from the ESO’s Digitized Sky Survey 2 (ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin)

The wings of this gull span an impressive 100 light-years from tip to tip. A birthplace for new stars, the nebula is located within our galaxy about 3,700 light-years away.

For an idea of how far that is, if the distance between the Sun and Earth were scaled down to 1 inch (2.5 cm) and you were standing in New York City, the stars in the Seagull Nebula would be in Paris, France (considering the most direct flight route.)

Powerful radiation from young stars causes the surrounding hydrogen gas to glow with a red color. Light from the hot blue-white stars also gets scattered off tiny dust particles in the nebula to create a blue haze.

Read more on the ESO website here.

2012 marks the 50th anniversary of the founding of the European Southern Observatory (ESO). ESO is the foremost intergovernmental astronomy organization in Europe and the world’s most productive ground-based astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom.