Curiosity Mars Rover Launch Gallery – Photos and Videos

[/caption]

NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.

Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”

The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.

The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.

Curiosity rover bound for Mars punches through Florida clouds. Credit: Ken Kremer
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
A United Launch Alliance Atlas V rocket blasts off from Space Launch Complex-41 at 10:02 p.m. EST with NASA’s Mars Science Lab rover Curiosity. Credit: Pat Corkery/ULA
Credit: NASA/KenThornsley
Curiosity Mars Science Laboratory launches. Credit: ULA


Launch Video – Credit: Matthew Travis/Spacearium

MSL launch. Credit: Julian Leek
MSL launch. Credit: Julian Leek

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?’

[/caption]

Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.

‘Mars Trek – Curiosity’s Search for Undiscovered Life’ zoomed to the heavens with today’s (Nov. 26) pulse pounding blastoff of NASA’s huge Curiosity Mars rover mounted atop a United Launch Alliance Atlas V rocket at 10:02 a.m. EST from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

Curiosity Mars Science Laboratory MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.

The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. The car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and to help determine if this gas is from a biological or geological source. Credit: Ken Kremer

The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.

“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”

“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”

“We’re exactly where we want to be, moving fast and cruising to Mars.”

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Mike Deep/David Gonzales

NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.

Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.

“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”

“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.

Topography of Gale Crater - Curiosity Mars rover landing site
Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA's Curiosity Mars Science Laboratory (yellow dot) to a high point on the mountain inside the crater (red dot) is about 3 miles (5 kilometers). Credit: NASA

The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.

The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.

The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.

The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.

The MSL spacecraft separates and heads on its way to Mars. Credit: NASA TV

The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.

MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.

“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”

Curiosity punches through Florida clouds on the way to Mars. Credit: Mike Deep/David Gonzales

“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”

“I’m very happy.”

“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.

“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”

Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.

NASA was only given enough money to build 1 rover this time.

“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”

Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California and John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the Nov. 26 post-launch media briefing at the Kennedy Space Center (KSC), pose with model of Atlas V rocket. Credit: Ken Kremer

Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.

Curiosity rover launches to Mars atop an Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News

A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.

“We are not a life detection mission.”

“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”

“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”

“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”

Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.

“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”

“I can’t wait to get on the ground,” said Grotzinger.

John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology and Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. Credit: Ken Kremer

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Mars Trek – Curiosity Poised to Search for Signs of Life

[/caption]‘Mars Trek – Curiosity’s Search for Undiscovered Life’ has its galaxy wide premiere Saturday morning Nov. 26 at 10:02 a.m. EST – live on NASA TV.

NASA’s quest ‘In Search of Life’ takes a bold leap in less than 12 hours with the Nov. 26 blastoff of “Curiosity”, the most complex and scientifically advanced robotic explorer ever sent to survey the surface of another world. The 103 minute launch window closes at 11:45 a.m. EST.

Curiosity and the United Launch Alliance Atlas V rocket that will thrust her to the Red Planet are poised for liftoff after being rolled out to Space Launch Complex 41 around 8 a.m. this morning under the watchful eyes of ground crews, mission scientists, reporters and photographers.

Universe Today was there – reporting live on all the history making and thrilling events !

Launch day weather remains favorable, with only a 30 percent chance of conditions prohibiting liftoff, said Air Force meteorologists. A low cloud ceiling is the sole concern at this time.

NASA’s Curiosity Mars rover is encapsulated inside the 5 meter payload fairing and loaded atop the Atlas V rocket at Space Launch Complex 41 at Cape Canaveral. Credit: Ken Kremer

The 1.2 million pound booster was pushed 1800 feet along rail tracks by twin diesel powered trackmobiles from the prelaunch preparation and assembly gantry inside the Vertical Integration Facility out to launch pad 41 at Cape Canaveral Air Force Station.

The 197 foot tall booster is equipped with 4 strap on solid rocket motors and generates some 2 million pounds of liftoff thrust according to Vernon Thorp, Atlas Program manager for ULA.

Curiosity is NASA’s next Mars rover and also quite possibly the last US built Mars rover due to severe cuts to NASA planetary science budget.

After an eight and one half month and 354 million mile (570 million km) interplanetary journey, Curiosity will slam into the thin Martian atmosphere at 13,000 MPH and utilize an unprecedented rocket powered pinpoint landing system known as the Sky Crane to touch down with all six wheels deployed inside Gale Crater.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

NASA’s Curiosity Mars rover is rolled out from the Vertical Integration Facility to Launch Pad 41 at Cape Canaveral. Credit: Ken Kremer

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Atlas V and Curiosity poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Immediately after touchdown, the 1 ton rover will transmit telemetry so that engineers back on Earth can assess the rover’s status.

“When we first land we want to ascertain the integrity and health of the vehicle and look at the surrounding terrain, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

“The rover’s mast will be deployed on the second day and we’ll get pictures.”

“Shortly thereafter we will begin our science investigations. The radiation (RAD) and subsurface hydrogen detection (DAN) instruments will start right away since they are passive.”

The rover will drive inside the first week.

“The cameras will be used to select targets. We will go up to the valuable targets. With the cameras and instruments we will determine which ones to sample” said Theisinger.

“Then we’ll deploy the arm which contains scientific equipment and collect samples with a percussion drill. The samples will be injected into the two science instruments for analysis that are located on the rover.”

“The SAM and ChemMin instruments will look for organic molecules and isotope ratios as well as identify and quantify the minerals in the rock and soil samples. It could be up to 2 to 3 months before we take the first samples,” explained Theisinger.

MSL is powered by a nuclear battery and is expected to operate for a minimum of one Martian year, equivalent to 687 days on Earth. NASA hopes the 6 foot tall rover will last alot longer.

Curiosity atop Atlas V poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life

[/caption]

NASA’s Curiosity Mars rover, the most technologically complex and scientifically capable robot built by humans to explore the surface of another celestial body, is poised to liftoff on Nov. 26 and will enable a quantum leap in mankind’s pursuit of Martian microbes and signatures of life beyond Earth.

“The Mars Science Lab and the rover Curiosity is ‘locked and loaded’, ready for final countdown on Saturday’s launch to Mars,” said Colleen Hartman, assistant associate administrator in NASA’s Science Mission Directorate, at a pre-launch media briefing at the Kennedy Space Center (KSC).

The $2.5 Billion robotic explorer remains on track for an on time liftoff aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. on Nov. 26 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

NASA managers and spacecraft contractors gave the “Go-Ahead” for proceeding towards Saturday’s launch at the Launch Readiness Review on Wednesday, Nov. 23. The next milestone is to move the Atlas V rocket 1800 ft. from its preparation and assembly gantry inside the Vertical Integration Facility at the Cape.

“We plan on rolling the vehicle out of the Vertical Integration Facility on Friday morning [Nov. 25] ,” said NASA Launch Director Omar Baez at the briefing. “We should be on the way to the pad by 8 a.m.”

The launch window on Nov. 26 is open until 11:14 a.m. and the current weather prognosis is favorable with chances rated at 70 percent “GO”.

“The final launch rehearsal – using the real vehicle ! – went perfectly, said NASA Mars manager Rob Manning, in an exclusive interview with Universe Today. Manning is the Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“I was happy.”

“The folks at KSCs Payload Handling Facility and at JPL’s cruise mission support area (CMSA) – normally a boisterous bunch – worked quietly and professionally thru to T-4 minutes and a simulated fake hold followed by a restart and a recycle (shut down) due to a sail boat floating too close to the range,” Manning told me.

Curiosity rover - Engineering support team working at consoles at JPL. Credit: Rob Manning

Readers may recall that NASA’s JUNO Jupiter orbiter launch in August was delayed by an hour when an errant boat sailed into the Atlantic Ocean exclusion zone.

“This rover, Curiosity rover, is really a rover on steroids. It’s an order of magnitude more capable than anything we have ever launched to any planet in the solar system,” said Hartman.

“It will go longer, it will discover more than we can possibly imagine.”

Curiosity rover explores inside Gale Crater after landing in August 2012. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. Credit: NASA, JPL-Caltech

Curiosity is locked atop the powerful Alliance Atlas V rocket that will propel the 1 ton behemoth on an eight and one half month interplanetary cruise from the alligator filled swamps of the Florida Space Coast to a layered mountain inside Gale Crater on Mars where liquid water once flowed and Martian microbes may once have thrived.

Curiosity is loaded inside the largest aeroshell ever built and that will shield her from the extreme temperatures and intense buffeting friction she’ll suffer while plummeting into the Martian atmosphere at 13,000 MPH (5,900 m/s) upon arrival at the Red Planet in August 2012.

The Curiosity Mars Science Lab (MSL) rover is the most ambitious mission ever sent to Mars and is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times as much as its predecessor’s science payloads.

Curiosity measures 3 meters (10 ft) in length and weighs 900 kg (2000 pounds), nearly twice the size and five times as heavy as NASA’s prior set of twin robogirls – Spirit and Opportunity.

The science team selected Gale crater as the landing site because it exhibits exposures of clays and hydrated sulfate minerals that formed in the presence of liquid water billions of years ago, indicating a wet history on ancient Mars that could potentially support the genesis of microbial life forms. Water is an essential prerequisite for life as we know it.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor.

Oblique View of Gale Crater, Mars, with Vertical Exaggeration
Gale Crater, where the rover Curiosity of NASA's Mars Science Laboratory mission will land in August 2012, contains a mountain rising from the crater floor. This oblique view of Gale Crater, looking toward the southeast, is an artist's impression using two-fold vertical exaggeration to emphasize the area's topography. Curiosity's landing site is on the crater floor northeast of the mountain. The crater's diameter is 96 miles (154 kilometers). The image combines elevation data from the High Resolution Stereo Camera on the European Space Agency's Mars Express orbiter, image data from the Context Camera on NASA's Mars Reconnaissance Orbiter, and color information from Viking Orbiter imagery.
Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS

The car sized rover is being targeted with a first of its kind precision rocket powered descent system to touchdown inside a landing ellipse some 20 by 25 kilometers (12.4 miles by 15.5 miles) wide and astride the towering mountain at a location in the northern region of Gale.

Curiosity’s goal is to search the crater floor and nearby mountain – half the height of Mt. Everest – for the ingredients of life, including water and the organic molecules that we are all composed of.

The robot will deploy its 7 foot long arm to collect soil and rock samples to assess their composition and determine if any organic materials are present – organics have not previously been detected on Mars.

Curiosity will also vaporize rocks with a laser to determine which elements are present, look for subsurface water in the form of hydrogen, and assess the weather and radiation environments

“After the rocket powered descent, the Sky-Crane maneuver deploys the rover and we land on the mobility system, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

The rover will rover about 20 kilometers in the first year. Curiosity has no life limiting constraints. The longevity depends on the health of the rovers components and instruments.

“We’ve had our normal challenges and hiccups that we have in these kinds of major operations, but things have gone extremely smoothly and we’re fully prepared to go on Saturday morning. We hope that the weather cooperates, said Theisinger

Missions to Mars are exceedingly difficult and have been a death trap for many orbiters and landers.

“Mars really is the Bermuda Triangle of the solar system,” said Hartman. “It’s the ‘death planet,’ and the United States of America is the only nation in the world that has ever landed and driven robotic explorers on the surface of Mars. And now we’re set to do it again.”

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning

[/caption]

“We are ready and so is Curiosity !”

– – Says Rob Manning, Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif – in an exclusive interview with Universe Today for all fans of Curiosity and the unprecedented voyage of Science and Discovery about to take flight to Mars on November 26. Manning was also the Chief Engineer for the Entry, Descent and Landing (EDL) of NASA’s phenomenally successful Spirit, Opportunity and Phoenix Mars robotic explorers.

Read Rob Manning’s special greeting about Curiosity to readers of Universe Today below.

Meet Rob and other JPL Mars engineers in the cool Video describing the ‘Challanges of Getting to Mars’ – below


Curiosity is NASA’s next Mars rover and her MMRTG nuclear power source has been installed at the launch pad through special access panels in the Atlas booster payload fairing and protective aeroshell on Nov. 17.

The huge 1-ton robot is now due to blastoff for the Red Planet on Saturday, November 26 at 10: 02 a.m. EST from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. The launch window is open for one hour and 43 minutes.

Liftoff was postponed by one day to replace a battery in the on board flight termination system required in case the rocket were to veer off course.

Here is the very latest Curiosty update status from JPL’s Rob Manning as of Sunday evening – Nov. 20

“All seems well here at JPL in Pasadena,” Manning told me.

“We are having our last rehearsal at 1:30 a.m. on Monday, Nov 21.

“Weird ! As of a few hours ago the last human hands (in gloves) closed out the hatch door on the entry aeroshell and the two large doors in the rocket fairing have been closed. What is weird about it is that finally finally she is powered up and alone.”

“She has never been this alone before. Ironically all eyes are still upon her. Our team is monitoring her vitals 24-7,” Manning explained.


“The Challenges of Getting to Mars’ – Video caption: Meet Curiosity Chief Engineer Rob Manning and more members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory explain the final assembly of Curiosity at the Kennedy Space Center and how Curiosity will land use the rocket assisted Sky Crane.

“By this time next week, Curiosity will be heading for the home she was meant for.”

“Soon she will feel the cold walls of deep space on her radiators. The x-band transmitter and receiver will have an broken view of the sky (with Earth but a shiny blue dot off to her left). The penetrating rays of the sun will push electrons out of the solar panels and keep her battery charged. (And perhaps a few solar flares will pass by, just to keep things interesting.)”

“Earth can be a rough place for a rover not designed for our planet. Worse are those of us who have poked and prodded, tested beyond spec and pushed in ways that can only be done on Earth.”

“Sometimes we over-do it and push near the breaking point. We are not perfect after all but we need to know that she will do what needs to be done for her very own survival. Well she seems to have survived us.”

“Of course Curiosity will never really be alone. We are right there with her every step of the way. She is us.”

Curiosity Mars Science Laboratory (MSL)- all elements assembled into flight configuration in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The top portion is the cruise stage attached to the aeroshell (containing the compact car-sized rover) with the heat shield on the bottom. MMRTG power source was installed through hatch door at right.
Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: NASA/Glenn Benson

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

“I will be at JPL during launch,” said Manning.

The JPL team is also working day and night to insure that the do or die Mars Insertion burn fires as planned.

“Once the Deep Space Network acquires the signal, I want to be there to make sure that we did not fail her and that the transition from being the Atlas’s payload to interplanetary cruise is as painless as possible.”

“It will be a bit of a surprise if we did not have a bit of a surprise – but we are ready and so is Curiosity”

Curiosity and the Atlas V booster that will propel her to Mars will roll out to Launch Pad 41 at the Florida Space Coast on Friday morning, Nov. 24, the day after the Thanksgiving holiday.

NASA TV will carry the MSL launch live

After a 10 month interplanetary journey to Mars, Curiosity will plummet through the atmosphere and fire up the rocket powered descent stage and ‘Sky Crane’ to safely touchdown astride a layered mountain at the Gale Crater landing site in August 2012.

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Student Alert: GRAIL Naming Contest – Essay Deadline November 11

[/caption]

Student Alert ! – Here’s your once in a lifetime chance to name Two NASA robots speeding at this moment to the Moon on a super science mission to map the lunar gravity field. They were successfully launched from the Earth to the Moon on September 10, 2011. Right now the robots are called GRAIL A and GRAIL B. But, they need real names that inspire. And they need those names real soon. The goal is to “capture the spirit and excitement of lunar exploration”, says NASA – the US Space Agency.

NASA needs your help and has just announced an essay writing contest open to students in Grades K – 12 at schools in the United States. The deadline to submit your essay is November 11, 2011. GRAIL stands for “Gravity Recovery And Interior Laboratory.”

The rules state you need to pick two names and explain your choices in 500 words or less in English. Your essay can be any length up to 500 words – even as short as a paragraph. But, DO NOT write more than 500 words or your entry will be automatically disqualified.

Learn more about the GRAIL Essay Naming Contest here:

Read all the Official Contest Rules here:

Download the Naming Contest Submission Form here:

Students: NASA Wants You to Name that GRAIL !
Write an Essay and name these twin Lunar mapping satellites. NASA’s twin GRAIL A & B science probes are now streaking to the Moon and arrive on New Year’s Day 2012. This picture shows how they looked, mounted side by side, during launch preparations prior to blasting off for the Moon on Sept. 10, 2011 from Florida. Credit: Ken Kremer

The GRAIL A and B lunar spaceships are twins – just like those other awe inspiring robots “Spirit” and “Opportunity” , which were named by a 10 year old girl student and quickly became famous worldwide and forever because of their exciting science missions of Exploration and Discovery.They arrive in Lunar Orbit on New Year’s Day 2012.

Blastoff of twin GRAIL A and B lunar gravity mapping spacecraft on a Delta II Heavy rocket on Sept. 10 from Pad 17B Cape Canaveral Air Force Station in Florida at 9:08 a.m. EDT. Credit: Ken Kremer

And there is another way that students can get involved in NASA’s GRAIL mission.

GRAIL A & B are both equipped with four student-run MoonKAM cameras. Students can suggest targets for the cameras. Then the cameras will take close-up views of the lunar surface, taking tens of thousands of images and sending them back to Earth.

“Over 1100 middle schools have signed up to participate in the MoonKAM education and public outreach program to take images and engage in exploration,” said Prof. Maria Zuber of MIT.

Prof. Zuber is the top scientist on the mission and she was very excited to announce the GRAIL Essay Naming contest right after the twin spaceships blasted off to the Moon on Sep 10, 2011 from Cape Canaveral in Florida.

What is the purpose of GRAIL ?

“GRAIL simply put, is a ‘Journey to the Center of the Moon’,” says Dr. Ed Weiler, NASA Associate Administrator of the Science Mission Directorate in Washington, DC.

“It will probe the interior of the moon and map its gravity field by 100 to 1000 times better than ever before. We will learn more about the interior of the moon with GRAIL than all previous lunar missions combined. Precisely knowing what the gravity fields are will be critical in helping to land future human and robotic spacecraft. The moon is not very uniform. So it’s a dicey thing to fly orbits around the moon.”

“There have been many missions that have gone to the moon, orbited the moon, landed on the moon, brought back samples of the moon,” said Zuber. “But the missing piece of the puzzle in trying to understand the moon is what the deep interior is like.”

So, what are you waiting for.

Start thinking and writing. Students – You can be space explorers too !

Read Ken’s continuing features about GRAIL
GRAIL Lunar Blastoff Gallery
GRAIL Twins Awesome Launch Videos – A Journey to the Center of the Moon
NASA launches Twin Lunar Probes to Unravel Moons Core
GRAIL Unveiled for Lunar Science Trek — Launch Reset to Sept. 10
Last Delta II Rocket to Launch Extraordinary Journey to the Center of the Moon on Sept. 8
NASAs Lunar Mapping Duo Encapsulated and Ready for Sept. 8 Liftoff
GRAIL Lunar Twins Mated to Delta Rocket at Launch Pad
GRAIL Twins ready for NASA Science Expedition to the Moon: Photo Gallery