A Possible Meteor Shower from Comet ISON?

Hey, remember Comet C/2012 S1 ISON? Who can forget the roller-coaster ride that the touted “Comet of the Century” took us on last year. Well, ISON could have one more trick up its cosmic sleeve –although it’s a big maybe — in the form of a meteor shower or (more likely) a brief uptick in meteor activity this week.

In case you skipped 2012 and 2013, or you’re a time traveler who missed their temporal mark, we’ll fill you in on the story thus far.

Comet ISON was discovered by Artyom Novichonok and Vitali Nevski on September 21st, 2012 as part of the ongoing International Scientific Optical Network (ISON) survey. Shortly after its discovery, researchers knew they had spotted something special: a sungrazing comet already active at over 6.4 Astronomical Units (A.U.s) from the Sun. The Internet then did what it does best, and promptly ran with the story. There were no shortage of Comet ISON conspiracy theories for science writers to combat in 2013. It’s still amusing to this day to see predictions for comet ISON post-perihelion echo through calendars, almanacs and magazines compiled and sent to press before its demise.

ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico
ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico

The frenzy for all things ISON reached a crescendo on U.S. Thanksgiving Day November 28th 2013, as ISON passed just 1.1 million kilometres from the surface of the Sun. Unfortunately, what emerged was a sputtering ember of the comet formerly known as ISON, which faded from view just as it was slated to reenter the dawn sky.

Hey, we were crestfallen as well… we had our semi-secret dark sky site pre-selected for ISON imaging post-perihelion and everything. Despite heroic searches by ground and space-based assets, we’ve yet to see any compelling recoveries of Comet ISON post-perihelion.

This week, however, Comet ISON may put on its last hurrah, in the form of a minor meteor shower. We have to say from the outset that we’re highly skeptical that an “ISON-id meteor outburst” will grace the skies. Known annual showers are fickle enough, and it’s nearly impossible to predict just what might happen during a meteor shower with no past track record.

But you won’t see anything if you don’t try. If anything is set to occur, the night of January 15th into the 16th might just be the time to watch. This is because the Earth will cross the orbital plane of ISON’s path right around 9:00 PM EST/2:00 UT. Last year, ISON passed within 3.3 million kilometres of the Earth’s orbit on its inbound leg. Earlier last year, ISON was estimated to have been generating a prodigious amount of dust, at a rate of about 51,000 kilograms per minute. Any would-be fragments of ISON outbound would’ve passed closest to the Earth at 64 million kilometres distant on the day after Christmas last year. Veteran sky observer Bob King wrote about the prospects for catching ISON one last time during this month back in December 2013.

Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.
A simulation showing Earth crossing the plane of Comet ISON’s orbit early on January 16th. Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.

Another idea out there that is even more unlikely is the proposal that dust from Comet ISON may generate an uptick in noctilucent cloud activity. And already, a brief search of the internet sees local news reports attempting to tie every meteor observed to ISON this week, though no conclusive link to any observed fireball has been made.

The radiant to watch for any possible “ISON-ids” sits near the +3.5 magnitude star Eta Leonis in the sickle of Leo. Robert Lundsford of the American Meteor Society notes in a recent posting that any ISON-related meteors would pass through our atmosphere at a moderate 51 kilometres a second, with a visible duration of less than one second.

Note that meteor activity has another strike against it, as the Moon reaches Full on the same night. In fact, the Full Moon of Wednesday January 15th sits in the constellation Gemini,just 32 degrees away from the suspect radiant!

Another caveat is in order for any remaining dooms-dayers: no substantial fragments of ISON are (or ever were) inbound and headed towards our fair planet. Yes, we’re seeing rumblings to this effect in the pseudoscience netherworlds of ye ole Internet, along with ideas that ISON secretly survived, NASA “hid” ISON, ISON cloaked like a Romulan Bird of Prey, you name it. Just dust grains, folks… a good show perhaps, but nothing more.

As near as we can tell, talk of a possible meteor shower generated from Comet ISON goes all the way back to a NASA Science News article online from April 2013. Radio observers of meteor showers should be alert for a possible surge in activity this week as well, and it may be the case that more radio “pings” will be noted than visual activity what with the light-polluting Full Moon in the sky. The radiant for any would-be “ISON-ids” transits highest in the sky for northern hemisphere observers at around 2 AM local.

But despite what it has going against it, we’d be thrilled if ISON put on one last show anyhow. It’s always worth watching for meteor activity and noting the magnitude and from whence the meteor came to perhaps note the pedigree as to the shower it might belong to.

The next annual dependable meteor shower won’t be until the night of April 21st to the 22nd, when the Spring Lyrids are once again active. And this year may just offer a special treat on May 24th, when researchers have predicted that the Earth may encounter debris streams laid down by Comet 209P LINEAR way back in 1803 and 1924… Camelopardalids, anyone? Now, that’s an exotic name for a meteor shower that we’d love to see trending!

-Catch sight of any “ISON-ids?” we’d love to see ‘em… be sure to post said pics at Universe Today’s Flickr pool.

 

 

NASA’s STEREO Spacecraft Spots Comets ISON and Encke

As comets ISON and Encke continue toward their respective rendezvous with the Sun, they have now both been captured on camera by NASA’s solar-observing STEREO spacecraft. The image above, taken on Nov. 21 (UT) with STEREO-A’s high-resolution HI-1 camera, shows ISON as it enters the field of view from the left. Encke is at center, while the planets Mercury and Earth (labeled) are bright enough to cause vertical disruptions in the imaging sensors. (The Sun is off frame to the right.)

As cool as this image is, it gets even better: there’s a video version. Check it out below:

Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)
Animation of STEREO-A images acquired on Nov. 20-21 (Karl Battams/NASA/STEREO/CIOC)

The dark “clouds” coming from the right are density enhancements in the solar wind, causing all the ripples in comet Encke’s tail. (Source)

The position of NASA's STEREO spacecraft relative to Earth and the Sun on Nov. 22
The position of NASA’s STEREO spacecraft relative to Earth and the Sun on Nov. 22

It’s fascinating to watch how the solar wind shapes and affects the tail of comet Encke… as ISON moves further into view, I’m sure we’ll see similar disruptions in its tail as well. (And look what STEREO-A saw happen to Encke’s tail back in 2007!)

Encke reached the perihelion of its 3.3-year-long orbit on Nov. 21; newcomer ISON will arrive at its on Nov. 28. While it seems to be holding together quite well in these STEREO images, what happens when it comes within 730,000 miles of the Sun next week is still anybody’s guess.

Read more: Whoa, Take a Look at Comet ISON Now!

Comets Encke and ISON Spotted from Mercury

Two comets currently on their way toward the Sun have been captured on camera from the innermost planet. The MESSENGER spacecraft in orbit around Mercury has spotted the well-known short-period comet Encke as well as the much-anticipated comet ISON, imaging the progress of each over the course of three days. Both comets will reach perihelion later this month within a week of each other.

While Encke will most likely survive its close encounter to continue along its 3.3-year-long lap around the inner Solar System, the fate of ISON isn’t nearly as certain… but both are making for great photo opportunities!

The figure above shows, on the left, images of comet 2P/Encke on three successive days from Nov. 6 to Nov. 8; on the right, images of C/2012 S1 (ISON) are shown for three successive days from Nov. 9 to Nov. 11. Both appear to brighten a little bit more each day.

MESSENGER image of ISON from Nov. 10 (enlarged detail)
MESSENGER image of ISON from Nov. 10 (enlarged detail)

MESSENGER is viewing these comets from a vantage point that is very different from that of observers on Earth. Comet Encke was approximately 0.5 AU from the Sun and 0.2 AU from MESSENGER when these images were taken; the same distances were approximately 0.75 AU and 0.5 AU, respectively, for ISON. More images will be obtained starting on November 16 when the comets should be both brighter and closer to Mercury. (Source: MESSENGER featured image article.)

Encke will reach its perihelion on Nov. 21; ISON on Nov. 28.

Read more: Will Comet ISON Survive Perihelion?

“We are thrilled to see that we’ve detected ISON,” said Ron Vervack, of the Johns Hopkins University Applied Physics Laboratory, who is leading MESSENGER’s role in the ISON observation campaign. “The comet hasn’t brightened as quickly as originally predicted, so we wondered how well we would do. Seeing it this early bodes well for our later observations.”

Comet 2P/Encke on October 30, 2013. The coma is partially obscuring the small barred spiral galaxy NGC 4371. Credit and copyright: Damian Peach.
Comet 2P/Encke photographed on October 30 by  Damian Peach.

Unlike ISON, Encke has been known for quite a while. It was discovered in 1786 and recognized as a periodic comet in 1819. Its orbital period is 3.3 years — the shortest period of any known comet — and November 21 will mark its 62nd recorded perihelion. (Source)

Read more: How to See This Season’s “Other” Comet: 2P/Encke

“Encke has been on our radar for a long time because we’ve realized that it would be crossing MESSENGER’s path in mid-November of this year,” Vervack explained. “And not only crossing it, but coming very close to Mercury.”

These early images of both comets are little more than a few pixels across, Vervack said, but he expects improved images next week when the comets make their closest approaches to MESSENGER and Mercury.

“By next week, we expect Encke to brighten by approximately a factor of 200 as seen from Mercury, and ISON by a factor of 15 or more,” Vervack said. “So we have high hopes for better images and data.”

– Ron Vervack, JHUAPL

Read more about the MESSENGER cometary observation campaign in the full news release here.

Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/Southwest Research Institute

This is Comet ISON Seen From Mars

It’s not much to look at, but there it is: the incoming comet ISON (aka C/2012 S1) as seen by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. An enlarged version of one of four just-released images, this represents a 256-by-256-pixel patch of sky imaged by HiRISE on Sunday, September 29. ISON is the fuzzy blob at center, 8.5 million miles (13.8 million km) away.

See all four images below:

HiRISE images of ISON on Sept. 29, 2013 (NASA/JPL/University of Arizona)
HiRISE images of ISON on Sept. 29, 2013 (NASA/JPL/University of Arizona)

HiRISE researchers Alan Delamere and Alfred McEwen explained in a news release:

Based on preliminary analysis of the data, the comet appears to be at the low end of the range of brightness predictions for the observation. As a result, the image isn’t visually pleasing but low coma activity is best for constraining the size of the nucleus. This image has a scale of approximately 8 miles (13.3 km) per pixel, larger than the comet, but the size of the nucleus can be estimated based on the typical brightness of other comet nuclei. The comet, like Mars, is currently 241 million kilometers from the Sun. As the comet gets closer to the sun, its brightness will increase to Earth-based observers and the comet may also become intrinsically brighter as the stronger sunlight volatilizes the comet’s ices.

More images of ISON from HiRISE are expected as the comet came even closer to Mars, approaching within 6.7 million miles (10.8 million km), but the illumination from those angles may not be as good.

NOTE: These are preliminary single (non-stacked) images, and still contain noise and background stars – hence the fuzziness. Plus HiRISE was not really designed for sky imaging! (Thanks to HiRISE team member Kristin Block for the info.)

So even though it’s at the “low end” of brightness predictions in these HiRISE images, ISON certainly hasn’t “fizzled” like some reports claimed earlier this year (although just how bright it will get in our skies remains to be seen.)

Comet ISON will make its closest pass of the Sun (perihelion) on November 28, 2013, coming within 724,000 miles (1.16 million km) before heading back out into the Solar System… if it survives the encounter, that is. Read more about how to view ISON here and here.

Source: University of Arizona HiRISE article by Alan Delamere and Alfred McEwen

_______________

Worried about ISON’s first (and possibly last) visit to the inner Solar System? Don’t be. Recent rumors of comet-caused catastrophe are greatly exaggerated… read more on David Dickinson’s article Debunking Comet ISON Conspiracy Theories (No, ISON is Not Nibiru).

An Unexpected Ending for Deep Impact

After almost 9 years in space that included an unprecedented July 4th impact and subsequent flyby of a comet, an additional comet flyby, and the return of approximately 500,000 images of celestial objects, NASA’s Deep Impact/EPOXI mission has officially been brought to a close.

The project team at NASA’s Jet Propulsion Laboratory has reluctantly pronounced the mission at an end after being unable to communicate with the spacecraft for over a month. The last communication with the probe was Aug. 8. Deep Impact was history’s most traveled comet research mission, having journeyed a total of about 4.7 billion miles (7.58 billion kilometers).

“Deep Impact has been a fantastic, long-lasting spacecraft that has produced far more data than we had planned,” said Mike A’Hearn, the Deep Impact principal investigator at the University of Maryland in College Park. “It has revolutionized our understanding of comets and their activity.”

Artist's rendering of the Deep Impactor flyby spacecraft (NASA)
Artist’s rendering of the Deep Impactor flyby spacecraft (NASA)

Launched in January 2005, the spacecraft first traveled about 268 million miles (431 million kilometers) to the vicinity of comet Tempel 1. On July 3, 2005, the spacecraft deployed an impactor into the path of comet to essentially be run over by its nucleus on July 4. This caused material from below the comet’s surface to be blasted out into space where it could be examined by the telescopes and instrumentation of the flyby spacecraft.  Sixteen days after that comet encounter, the Deep Impact team placed the spacecraft on a trajectory to fly back past Earth in late December 2007 to put it on course to encounter another comet, Hartley 2 in November 2010, thus beginning the spacecraft’s new EPOXI mission.

“Six months after launch, this spacecraft had already completed its planned mission to study comet Tempel 1,” said Tim Larson, project manager of Deep Impact at JPL. “But the science team kept finding interesting things to do, and through the ingenuity of our mission team and navigators and support of NASA’s Discovery Program, this spacecraft kept it up for more than eight years, producing amazing results all along the way.”

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. Along the way, it also observed six different stars to confirm the motion of planets orbiting them, and took images and data of the Earth, the Moon and Mars. These data helped to confirm the existence of water on the Moon, and attempted to confirm the methane signature in the atmosphere of Mars.  One sequence of images is a breathtaking view of the Moon transiting across the face of Earth.

This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI  spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.
This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. In January 2012, Deep Impact performed imaging and accessed the composition of distant comet C/2009 P1 (Garradd).

It took images of comet ISON this year and collected early images of comet ISON in June.

After losing contact with the spacecraft last month, mission controllers spent several weeks trying to uplink commands to reactivate its onboard systems. Although the exact cause of the loss is not known, analysis has uncovered a potential problem with computer time tagging that could have led to loss of control for Deep Impact’s orientation. That would then affect the positioning of its radio antennas, making communication difficult, as well as its solar arrays, which would in turn prevent the spacecraft from getting power and allow cold temperatures to ruin onboard equipment, essentially freezing its battery and propulsion systems.

Without battery power, the Deep Impact spacecraft is now adrift and silent, spinning out of control through the solar system.

Launch of Deep Impact aboard a Boeing Delta II from Cape Canaveral AFB on Jan. 12, 2005 (NASA)
Launch of Deep Impact aboard a Boeing Delta II rocket from Cape Canaveral AFS on Jan. 12, 2005 (NASA)

“Despite this unexpected final curtain call, Deep Impact already achieved much more than ever was envisioned. Deep Impact has completely overturned what we thought we knew about comets and also provided a treasure trove of additional planetary science that will be the source data of research for years to come.”

– Lindley Johnson, Program Executive for the Deep Impact mission

It’s a sad end for a hardworking spacecraft, but over the course of its 8 1/2 years in space Deep Impact provided many significant results for the science community. Here are the top five, according to the mission’s principal investigator Michael A’Hearn.

Read more about the Deep Impact mission here.

Source: NASA press release

Stars, Galaxies, and Comet ISON Grace a New Image from Hubble

This image of the steadily-approaching Comet ISON, made from observations with the Hubble Space Telescope on April 30, show not only the comet itself but also a rich background of stars located within our own galaxy and even the distant spirals of entire galaxies much, much farther away — as Josh Sokol describes it on HubbleSite.org’s ISONblog it’s like the astronomy stickers you’d get for your kid’s bedroom, except you’d never get to see such a scene in real life “unless, of course, you had Hubble.”

Comet C/2012 S1 (ISON) is currently on its way into the inner Solar System on course for a close encounter with the Sun, zooming along at 77,250 km/h (48,000 miles per hour). It will make its closest pass by the Sun on November 28 (coming within just .012 AU) and will hopefully put on a pretty spectacular show in the night sky —  especially if it survives the trip.

The track of Comet ISON through the constellations Gemini, Cancer and Leo prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger).
Comet ISON’s projected path through the night sky prior to perihelion. (Credit: NASA/GSFC/Axel Mellinger)

Watch: Comet ISON Timelapse Hubble Movie

The image above was created from multiple Hubble observations earlier this year, some geared toward capturing ISON and others calibrated more for distant, dimmer objects like galaxies and far-flung stars. By combining the results we get a view of a comet speeding through space with an almost too-perfect hyperrealism, courtesy of NASA’s hardest-working space telescope.

“The result is part science, part art. It’s a simulation of what our eyes, with their ability to dynamically adjust to brighter and fainter objects, would see if we could look up at the heavens with the resolution of Hubble. The result is a hodepodge of almost all the meat-and-potatoes subjects of astronomy – no glow-in-the-dark stickers required.”

– Josh Sokol, HubbleSite ISONblog

Learn about other ways NASA will be observing Comet ISON here.

Source: HubbleSite.org

Comet Lemmon: A Preview Guide for April

As Comet 2011 L4 PanSTARRS moves out of the inner solar system, we’ve got another comet coming into view this month for northern hemisphere observers. 

Comet C/2012 F6 Lemmon is set to become a binocular object low to the southeast at dawn for low northern latitudes in the first week of April. And no, this isn’t an April Fools’ Day hoax, despite the comet’s name. Comet Lemmon (with two m’s) was discovered by the Mount Lemmon Sky Survey (MLSS) based outside of Tucson, Arizona on March 23, 2012. MLSS is part of the Catalina Sky Survey which searches for Near Earth Asteroids. We’ve got another comet coming into view this month for northern hemisphere observers as Comet 2011 L4 PanSTARRS moves out of the inner solar system.

The comet is on an extremely long elliptical orbit, with a period of over 11,000 years. Comet Lemmon just passed perihelion at 0.74 astronomical units from the Sun on March 24th.

Animation of Comet Lemmon as it passes the star Gamma Crucis on January 17th. (Courtesy of Luis Argerich. Used with permission).
Animation of Comet Lemmon as it passes the star Gamma Crucis on January 17th. (Courtesy of Luis Argerich. Used with permission).

Southern hemisphere observers have been getting some great views of Comet Lemmon since the beginning of this year. It passed only three degrees from the south celestial pole on February 5th, and since that time has been racing up the “0 Hour” line in right ascension. If that location sounds familiar, that’s because another notable comet, 2011 L4 PanSTARRS has been doing the same. In fact, astrophotographers in the southern hemisphere were able to catch both comets in the same field of view last month.

Another celestial body occupies 0 Hour neighborhood this time of year. The Sun just passed the vernal equinox marking the start of Spring in the northern hemisphere and Fall in the southern on March 19th.

And like PanSTARRS, Comet Lemmon has a very steep orbit inclined 82.6° relative to the ecliptic.

The steep path and current position of Comet Lemmon. (Credit: NASA/JPL' Small-Body Database Browser).
The steep path and current position of Comet Lemmon. (Credit: NASA/JPL’ Small-Body Database Browser).

Comet Lemmon broke naked-eye visibility reaching +6th magnitude in late February and has thus far closely matched expectations. Current reports place it at magnitude +4 to +5 as it crosses northward through the constellation Cetus. Predictions place the maximum post-perihelion brightness between magnitudes +3 and +5 in early April, and thus far, Comet Lemmon seems to be performing right down the middle of this range.

Brightness graph for Comet Lemmon for the months surrounding perihelion. (Created by author).
Brightness graph for Comet Lemmon for the months surrounding perihelion. (Created by author).

Southern observers have caught a diffuse greenish 30” in diameter nucleus on time exposures accompanied by a short, spikey tail. Keep in mind, the quoted brightness of a comet is extended over its entire surface area. Thus, while a +4th magnitude star may be easily visible in the dawn, a 3rd or even 2nd magnitude comet may be invisible to the unaided eye. Anyone who attempted to spot Comet PanSTARRS in the dusk last month knows how notoriously fickle it actually was. Binoculars are your friend in this endeavor. Begin slowly sweeping the southeast horizon about an hour before local sunrise looking for a fuzzy “star” that refuses to reach focus. Comet Lemmon will get progressively easier in the dawn sky for latitudes successively farther north as the month of April progresses.

The apparent path of Comet Lemmon for April looking southeast about an hour before local sunrise from latitude 30 degrees north. (Created by the Author using Starry Night).
The apparent path of Comet Lemmon for April 10th through the 30th looking east about an hour before local sunrise from latitude 30 degrees north. (Created by the Author using Starry Night).

Comet Lemmon will continue to gain elevation as it crosses from Cetus into the constellation Pisces on April 13th. An interesting grouping occurs as the planet Mercury passes only a few degrees from the comet from April 15th to April 17th. Having just past greatest elongation on March 31st, Mercury will shine at magnitude -0.1 and make a good guide to locate the comet in brightening dawn skies. The pair is joined by the waning crescent Moon on the mornings of April 7th and 8th which may also provide for the first sighting opportunities from low north latitudes around these dates.

The apparent path of Comet Lemmon for April looking southeast about an hour before local sunrise from latitude 30 degrees north. (Created by the Author using Starry Night).
Mercury meets Comet Lemmon on April 15th as seen about an hour before local sunrise from latitude 30 degrees north. (Created by the Author using Starry Night).

The Moon reaches New phase on Wednesday, April 10th at 5:35AM EDT/9:35 UT. It will be out of the morning sky for the next couple of weeks until it reaches Full on April 25th, at which point it will undergo the first eclipse of 2013, a very shallow partial. (More on that later this month!)

Comet Lemmon will then slide across the celestial equator on April 20th and cross the plane of the ecliptic on April 22nd as it heads up into the constellation Andromeda in mid-May. We’re expecting Comet Lemmon to be a fine binocular object for late April, but perhaps not as widely observed due to its morning position as PanSTARRS was in the dusk.

By mid-May, Comet Lemmon will have dipped back down below +6th magnitude and faded out of interest to all but a few deep sky enthusiasts. Comet Lemmon will pass within 10° of the north celestial pole on August 9th, headed back out into the icy depths of the solar system not to return for another 11,000-odd years.

It’s interesting to see how these two springtime comets will effect observers expectations for the passage of Comet C/2012 S1 ISON. Will this in fact be the touted “Comet of the Century?” Much hinges on whether ISON survives its November 28th perihelion only 1,166,000 kilometers from the center of our Sun (that’s 0.68 solar-radii or about 3 times the Earth-Moon distance from the surface of the Sun). If so, we could be in for a fine “Christmas Comet” rivaling the passage of Comet Lovejoy in late 2011. On the other hand, a disintegration of Comet ISON would be more akin to the fizzle of Comet Elenin earlier in 2011.

In the meantime, enjoy Comet Lemmon as an Act 2 in the 2013 Three Act “Year of the Comet!

The Year of the Comets: Three Reasons Why 2013 Could be the Best Ever

2013 could turn out to be a comet bonanza. No fewer than three of these long-tailed beauties are expected to brighten to naked eye visibility. Already Comet C/2011 L4 PANSTARRS has cracked that barrier. Sky watchers in Australia have watched it grow from a telescopic smudge to a beautiful binocular sight low above the horizon at both dusk and dawn. A few have even spotted it without optical aid in the past week. Excited reports of a bright, fan-shaped dust tail two full moon diameters long whet our appetite for what’s to come.

Recent brightness estimates indicate that the comet could be experiencing a surge or “second wind” after plateauing in brightness the past few weeks. If the current trend continues, PanSTARRS might reach 1st or 2nd magnitude or a little brighter than the stars of the Big Dipper when it first becomes visible to northern hemisphere sky watchers around March 7. That’s little more than two weeks away!

Comet Panstarrs will make its first appearance for northern hemisphere sky watchers around March 7 low in the western sky after sundown. Notice that the comet gets no higher than 10 degrees - about one fist held at arm's length - through much of the month. Illustration created using Chris Marriott's SkyMap software
Comet Panstarrs will make its first appearance for northern hemisphere sky watchers around March 7 low in the western sky after sundown. Notice that the comet gets no higher than 10 degrees – about one fist held at arm’s length – through much of the month. Illustration created using Chris Marriott’s SkyMap software

Every day between now and March 10, when PanSTARRS’ orbit takes it closest to the sun, the comet is expected to slowly increase in brightness. Later this month it disappears in the solar glare, but when it re-emerges into evening twilight around Thursday, March 7, northern and southern hemisphere observers alike will get great views. Binoculars should easily show a bright head and swept-back tail pointing away from the sun. And don’t forget to mark your calendar for March 12. On that date the thin lunar crescent will join the comet for a rare photogenic pairing. To locate and keep track of PanSTARRS, you’ll need the following materials and circumstances:

* An unobstructed view of the western horizon
* Clear, haze-free skies at dusk
* Pair of binoculars
* A map

I can’t help you with all of the above, but this map will help point you in the right direction. Once you find a location with a great western view, watch just above the horizon for a fuzzy, star-like object in your binoculars. While it’s possible the comet will be bright enough to see with the naked eye, binoculars will make finding it much easier. They’ll also reveal details of tail structure too subtle to be visible otherwise.

Incredible detail is seen in the gas tail of F6 Lemmon in this photo made with a 19.6-inch telescope Feb. 17, 2013. Credit: Martin Mobberley
Incredible detail is seen in the gas tail of F6 Lemmon in this photo made with a 19.6-inch telescope Feb. 17, 2013. Credit: Martin Mobberley

Comet PanSTARRS has some cometary company.  C/2012 F6 Lemmon is currently plying its way through the constellation Tucana the Toucan, shining right around the naked eye limit at magnitude 5.5. To the unaided eye, Lemmon looks like a dim fuzzy spot. Binoculars show a thin gas tail and big, bright head or coma. Comas develop around the comet’s icy nucleus as sunlight vaporizes dusty ice to create a short-lived atmosphere that in the shape of a luminous teardrop. Long-exposures like the one above reveal richly-detailed streamers of carbon monoxide and other gases fluorescing in sunlight in the comet’s fashionably skinny tail.

Lemmon is slowly receding from Earth this month, but should remain just above the naked eye limit for some time as it continues to approach the sun. Northern hemisphere observers will need to be patient to see this one. After looping around the sun on March 24, the comet will pop back into the morning sky near the familiar Square of Pegasus asterism in early May. If we’re lucky, Lemmon may still be near the naked eye limit and visible in ordinary binoculars.

Cmet C/2012 F6 (Lemmon), imaged on  Feb. 19. 2013 remotely from Q62 (iTelescope Observatory, Siding Spring). Credit: Ernesto Guido and Nick Howes, Remanzacco Observatory.
Cmet C/2012 F6 (Lemmon), imaged on
Feb. 19. 2013 remotely from Q62 (iTelescope Observatory, Siding Spring). Credit: Ernesto Guido and Nick Howes, Remanzacco Observatory.

Before we move on to the comet with the greatest expectations, I want to mention Comet 2P/Encke. Encke was the only the second comet to have its orbit computed – way back in 1819 by German astronomer Johann Encke. This year it’s making its 62nd observed return to Earth’s vicinity. That’s a lot of visits, but when your orbital period is only 3.3 years – the shortest known of any comet – you can’t help but be a regular visitor. While not expected to brighten to naked eye level, the comet will be a fine sight in modest-sized telescopes glowing around 8th magnitude when it tracks between the Big Dipper and Leo the Lion this October.

Comet ISON in the western sky shortly after sunset in late November this year. Illustration created with Chris Marriott's SkyMap software
Comet ISON in the western sky shortly after sunset in late November this year. Illustration created with Chris Marriott’s SkyMap software

Our final comet, Comet C/2012 S1 ISON, was discovered last September by Russian amateurs Vitali Nevski and Artyom Novichonok while making observations for the International Scientific Optical Network (ISON). At the time, it was farther than Jupiter and impossibly faint, but once ISON’s orbit was determined, astronomers realized the comet would pass only 1.1 million miles from center of the sun (680,000 miles above its surface) on November 28, 2013.

Comet ISON belongs to a special category of comets called sungrazers. As the comet performs a hairpin turn around the sun on that date, its ices will vaporize furiously in the intense solar heat. Assuming it defies death by evaporation, ISON is expected to become a brilliant object perhaps 10 times brighter than Venus. Or brighter. Some predict it could put the full moon to shame. If so, that would occur for a brief time around at perihelion (closest approach to the sun) when the comet would only be visible in the daytime sky very close to the sun. When safely viewed, ISON might look like a brilliant, fuzzy star in a blue sky.

A color image of comet Ison taken on February 5, 2013 from northern Arizona. Credit: Chris Schur.
A color image of comet Ison taken on February 5, 2013 from northern Arizona. Credit: Chris Schur.

Most of us won’t risk burning our retinas staring so close to sun. Instead we’ll watch with anticipation as the comet sprouts a long tail while ascending from the western horizon just after sunset in late November and early December. Whatever it does, sky watchers in both southern and northern hemispheres will ringside seats when ISON’s at its best.

Right now the comet’s whiling away its time in the constellation Gemini the Twin and still very faint. Come September, it should be easily visible in small telescopes in the morning sky. The first naked eye sightings could happen in late October. Many of us hope the comet will be one for the record books, a worthy successor to C/2006 P1 McNaught, the last “great comet” to dazzle human eyes. It reached peak magnificence for southern hemisphere sky watchers in January 2007.

C/2006 P1 McNaught became a memorable sight for observers living in southern latitudes in January 2007.  Will Comet ISON do the same? Credit: Wikipedia
C/2006 P1 McNaught became a memorable sight for observers living in southern latitudes in January 2007. Will Comet ISON do the same? Credit: Wikipedia

Three bright comets – and one modestly bright – might be enough for a year, but there could be surprises. Dozens of new comets are discovered each year by professional sky surveys and amateur astronomers. Most are faint and move along their appointed paths unnoticed by 99.9% of the world’s population, but every so often a new one comes along that blossoms into a spectacle. How many of  those are out there tonight waiting to be discovered?