Get Out Your Comet Scorecards: Comet Nevski Now Visible With Binoculars

Capture of Comet Nevski shortly after discovery using the ITelescope Observatory in New Mexico. (Credit: Ernesto Guido, Nick Howes & Martino Nicolini).

Is 2013 truly the “Year of the Comet?” Perhaps “Comets” might be a better term, as no less than five comets brighter than +10th magnitude grace the pre-dawn sky for northern hemisphere observers.

Comet C/2013 V3 Nevski has just brightened up 6 magnitudes — just over a 250-fold increase in brightness — and now sits at around magnitude +8.8. Comet Nevski was just recently discovered by Vitali Nevski using a 0.4 metre reflecting telescope 12 days ago on November 8th. If that name sounds familiar, it’s because Nevski discovered the comet from the Kislovodsk observatory located near Kislovodsk, Russia which is part of the International Scientific Optical Network survey which located comet ISON last year. In fact, there was some brief controversy early on in its discovery that Comet C/2012 S1 ISON should have had the moniker Comet Nevski-Novichonok.

At the time of discovery, Comet Nevski appeared to be nothing special: shining at magnitude +15.1, it was well below our +10 magnitude limit for consideration as “interesting,” and was projected to linger there for the duration of its passage through the inner solar system. About a dozen odd such comet discoveries crop up per year, most of which give astronomers a brief pause as the orbit and size of the comet become better known, only to discern that they’re most likely to be nothing extraordinary.

The orbit of comet Nevski, as seen during the closest approach to the Earth on December 21st. (Credit:  The Solar System Dynamics JPL Small-Body Database Browser).
The orbit of comet Nevski, as seen during the closest approach to the Earth on December 21st. (Credit: The Solar System Dynamics JPL Small-Body Database Browser).

Such was to be the case with Comet Nevski, until it suddenly flared up this past weekend.

Observer Gianluca Masi caught Comet Nevski in outburst, using a Celestron C14 remotely as part of the Virtual Telescope 2.0 project:

Comet Nevski captured on November 14th by
Comet Nevski captured on November 14th by Gianluca Masi. (Credit: The Virtual Telescope 2.0 Project).

You’ll note that Comet Nevski shows a small, spiky tail on the brief exposure. As of this writing, it currently sits at between magnitudes +8 and +9 and should remain there for the coming week if this current outburst holds.

Comet Nevski is well placed for northern hemisphere observers high in the morning sky, and will spend the remainder of November and early December crossing the astronomical constellation of Leo.

The celestial path of Comet Nevski from mid-November to the end of December. (Created by the author using Starry Night Education simulation software).
The celestial path of Comet Nevski from mid-November to the end of December. (Created by the author using Starry Night Education simulation software).

Here’s a blow-by-blow rundown on noteworthy events for this comet for the remainder of 2013:

November 23rd: Passes the +5.3 magnitude star Psi Leonis and crosses north of the ecliptic plane.

December 1st: Passes +3.4 magnitude star Eta Leonis.

December 6th: Passes +4.8 magnitude 40 Leonis and the bright +2nd magnitude star Algieba.

December 15th: Crosses into the constellation Leo Minor.

December 17th: Passes near the +5.5th magnitude star 40 Leonis Minoris.

December 21st: Passes closest to Earth, at 0.847 Astronomical Units (A.U.s), or 126 million kilometres distant.

December 30th: Passes into the constellation Ursae Majoris.

Note that a “close pass” denotes a passage of the comet within a degree of a bright or interesting object.

The orbit of Comet Nevski is inclined 31.5 degrees relative to the ecliptic, and it will be headed for circumpolar for observers based in high northern latitudes as it dips back down below our “interesting” threshold of magnitude +10 in early 2014.

This comet passed perihelion on October 27th, 2013 just over a week prior to discovery. Comet Nevski is Halley-type comet, with a 27.5 year orbit.

So, looking at the “Comet Scorecard,” we currently have:

Comet C/2012 X1 LINEAR: Still undergoing a moderate outburst at magnitude +8.2, very low to the north east for northern hemisphere observers at dawn in the constellation Boötes.

Comet 2P/Encke: Reaches perihelion tomorrow at 0.33 AU’s from the Sun, shining at magnitude +7.7 near Mercury in the dawn sky but is now mostly lost in the Sun’s glare.

Comet C/2013 R1 Lovejoy: is currently well placed in the constellation Ursa Major crossing into Canes Venatici in the hours before dawn. Currently shining at magnitude +5.4, Comet R1 Lovejoy is visible to the unaided eye from a dark sky site. We caught sight of the comet last week with binoculars, looking like an unresolved globular cluster as it passed through the constellations of Leo and Leo Minor.

And of course, Comet C/2012 S1 ISON: As of this writing, ISON is performing up to expectations as it approaches Mercury low in the dawn shining at just above +4th magnitude. We’ve seen some stunning pictures as of late as ISON unfurls its tail, and now the eyes of the astronomical community will turn towards the main act: perihelion on November 28th. Will it fizzle or dazzle? More to come next week!

The recent outbursts of Comets X1 LINEAR and V3 Nevski are reminiscent of the major outburst of Comet Holmes back in 2007. Of course, the inevitable attempts to link these outbursts to the current sputtering solar max will ensue, but to our knowledge, no conclusive correlations exist. Remember, the outburst from Comet Holmes occurred as we were approaching what was to become a profound solar minimum.

Also, it might be tempting to imagine that all of these comets are somehow related, but they are in fact each on unique and very different orbits, and only appear in the rough general direction in the sky as seen from our Earthly vantage point… a boon for dawn patrol sky watchers!

Got pics? Send ‘em in to Universe Today!



Comet LINEAR Suddenly Brightens with Outburst: How to See It

Comet C/2012 X1 LINEAR as imaged by Howes, Guido & Nicolini on Monday, October 21st. (Credit: remanzacco.blogspot)

It’s swiftly becoming an “all comets, all the time” sort of observing season. The cyber-ink was barely dry on our “How to Spot Comet 2P/Encke” post this past Monday when we were alerted to another comet that is currently in the midst of a bright outburst.

That comet is C/2012 X1 LINEAR. Discovered on December 8th, 2012 by the ongoing Lincoln Near Earth Asteroid Research (LINEAR) survey based in Socorro, New Mexico, Comet X1 LINEAR was expected to peak out at about +12th magnitude in early 2014.

That all changed early this week, when amateur observers began to report a swift change in brightness for the otherwise nondescript comet. Japanese observer Hidetaka Sato reported the comet at magnitude +8.5 on October 20th, a full 5.5 magnitudes above its expected brightness of +14. Remember, the magnitude scale is logarithmic, and the lower the number, the brighter the object. Also, 5 magnitudes represent an increase in brightness of 100-fold.

Astronomers Nick Howes, Martino Nicolini and Ernesto Guido used the remote 0.5 metre iTelescope based in New Mexico on the morning of Monday, October 21st to confirm the outburst. Other amateurs and professional instruments are just now getting a look at the “new and improved” Comet X1 LINEAR low in the dawn sky. Romanian amateur observer Maximilian Teodorescu noted on yesterday’s Spaceweather that the comet was not visible through his 4.5 inch refractor, though it was easy enough to image.

Comet X1 LINEAR currently sits in the constellation Coma Berenices about mid-way between the stars Diadem, (Alpha Coma Berenices) and Beta Coma Berenices. Shining at +8.5 magnitude, the coma is about 85” across with a 10” bright central region. This gives X1 LINEAR the appearance of an unresolved +8th magnitude globular cluster. In fact, a classic globular and a star party fave known as M3 lies about 8 degrees away at the junction of the constellations Canes Venatici, Boötes and Coma Berenices. M3 shines at +7th magnitude and will make a great contrast on the hunt for the comet.

Unfortunately, the window of time to search for the comet is currently short. From latitude 30 degrees north, the comet sits only 15 degrees about the northeast horizon 30 minutes before local sunrise. The situation is a bit better for observers farther to the north, and mid-November sees the comet 20 degrees above the horizon in the dawn sky.

Comet X1 LINEAR is currently covering 40’ (2/3rds of a degree, or 1 1/3 the size of a Full Moon) a day, and will spend most of the month of November in the constellation Boötes. Keep in mind, X1 LINEAR is currently still on brightening trend “with a bullet.” Revised light curves now show it on track to reach magnitude +6 near perihelion early next year, but further brightening could still be in the cards for this one. Remember Comet 17P/Holmes a few years back? That one jumped from an uber-faint +17th magnitude to a naked eye brightness of +2.8 in less than 48 hours.

Comet X1 LINEAR will reach a perihelion of 1.6 Astronomical Units (A.U.s) from the Sun on February 21st, 2014, and pass 1.6 A.U.s from the Earth around June 28th, 2014. The comet has a high inclination of 44.4° degrees relative to the ecliptic, and is on a respectable 1872 year orbit.

Here are some notable dates for the comet through the end of 2013;

The path of Comet C/2012 X1 LINEAR from October 23 to November 28th. Click to enlarge. (Credit: Created using Starry Night Education Software).
The path of Comet C/2012 X1 LINEAR from October 23 to November 28th. Click to enlarge. (Credit: Created using Starry Night Education Software).

-November 2nd: Crosses into the constellation Boötes.

-November 6th: Passes near the +4.9th magnitude star 6 Boötis.

-November 16th: Passes near the bright star Arcturus.

-December 6th: Crosses into the constellation Serpens Caput.

-December 10th: Passes near the +5 magnitude star Tau1 Serpentis.

-December 14th: Comet X1 LINEAR sits only 8 degrees from Comet ISON.

-December 26th: Crosses into the constellation Hercules.

Note: “Passes near” on the above list denotes a pass closer than one degree, except as noted.

Now, we REALLY need the Moon to pass Last Quarter phase this coming Saturday so we can get a good look at all of these dawn comets! As of writing this, the current scorecard of binocular comets— comets with a brightness between magnitude +6 and +10 —sits at:

-2P Encke: +7.9 magnitude in Leo.

-C/2013 R1 Lovejoy: +8.7th magnitude in Canis Minor.

-C/2013 X1 LINEAR: +8.5th magnitude in Coma Berenices.

-C/2012 S1 ISON: +9.7th magnitude in Leo.

-C/2012 V2 LINEAR: +8.9th magnitude in Centaurus.

Comet X1 LINEAR on the morning of October 25th, as seen from latitude 30 degrees north 45 minutes prior to sunrise. (Created using Stellarium).
Comet X1 LINEAR on the morning of October 25th, as seen from latitude 30 degrees north 45 minutes prior to sunrise. (Created using Stellarium).

It’s also amusing to note how the method of notification for these sorts of outbursts has changed in recent years. I first heard of the outburst of X1 LINEAR on Monday evening via Twitter. Contrast this with Comet Holmes in 2007, which came to our attention via message board RSS feed. And way back in 1983, we all read about of the close passage of Comet IRAS-Araki-Alcock… weeks after it occurred!

Another curious phenomenon may also work its way through the news cycle. When Comet Holmes became a hit back in 2007, spurious reports of comets brightening became fashionable. If you were to believe everything you read on the web, it suddenly seemed like every comet was undergoing an outburst! This sort of psychological trend towards wish fulfillment may come to pass again as interest in comet outbursts mounts.

It’s also worth noting that, contrary to rumors flying around ye’ ole web, Comet X1 LINEAR is not following Comet ISON. The two are on vastly different orbits, and only roughly lie along the same line of sight as seen from our Earthly vantage point.

The orbital path of Comet X1 LINEAR. (Credit: The JPL Solar System Dynamics Small-Body Database Browser).
The orbital path of Comet C/2012 X1 LINEAR. (Credit: The JPL Solar System Dynamics Small-Body Database Browser).

And that’s it for our weekly (daily?) segment of “As the Comets Turn…” don’t forget to “fall back” one hour and plan your morning comet-hunting vigil accordingly this coming Sunday if you live in Europe-UK. North America still has until November 3rd to follow suit.

Happy comet hunting!

-Got a recent pic of Comet X1 LINEAR? be sure to post it in the Universe Today Flickr forum!

New Data: Will Comet ISON Survive its Close Perihelion Passage?

An analysis of the dust coma of comet ISON showing the evaporation of ice particles. (Credit: NASA/ESA J.-Y. Li (Planetary Science Institute and the Hubble ISON Imaging Science Team).

It’s the question on every astronomer’s mind this season, both backyard and professional: will Comet C/2012 S1 ISON survive perihelion?

Now, new studies released today at the American Astronomical Society’s 45th Annual Division for Planetary Sciences meeting being held this week in Denver suggests that ISON may have the “right stuff” to make it through its close perihelion passage near the Sun. This is good news, as Comet ISON is expected to be the most active and put on its best showing post-perihelion… if it survives.

Researchers Matthew Knight of the Lowell Observatory and Research Scientist Jian-Yang Li of the Planetary Science Institute both presented a compelling portrait of the characteristics and unique opportunities presented by the approach of comet ISON to the inner solar system.

Jian-Yang Li studied ISON earlier this year using Hubble before it passed behind the Sun from our Earthly vantage point. Li and researchers were able to infer the position and existence of a jet coming from the nucleus of the comet, which most likely marks the position of one of its rotational poles.

“We measured the rotational pole of the nucleus,” Li noted in a press release from the Planetary Science Institute. The pole indicates that only one side of the comet is being heating by the Sun on its way in until approximately one week before it reaches its closest point to the Sun.”

Could we be in for a “surge” of activity from ISON coming from around November 20th on?

Comet ISON as imaged from Aguadilla, (sp) Puerto Rico recently on october 6th. (Credit: Efrain Morales Rivera).
Comet ISON as imaged from Aguadilla, Puerto Rico recently on October 6th. (Credit: Efrain Morales Rivera).

Li also noted that the reddish color of the coma of ISON suggests an already active comet sublimating water ice grains as they move away from the nucleus. He also noted that time has been allocated to observe ISON using Hubble this week.

Next up, researcher Mathew Knight presented some encouraging news for ISON when it comes to surviving perihelion.

The findings were a result of numerical simulations carried out by Kevin Walsh and Knight, combined with a historical analysis of previous sun-grazing comets. Both suggest that comet nuclei smaller than 200 metres in diameter, with an average density or lower (for comets, that is) typically do not survive a close passage to the Sun.

Both researchers place the size of ISON’s nucleus in the range of 0.5 to 2 kilometres, comfortably above the 0.2 kilometre “shred limit” for its relative perihelion distance. ISON is not a technically Kreutz group sungrazer, though studies of the over 2,000 known Kreutz comets historically observed provide an interesting guideline for what might be in store for ISON. Four Kreutz comets, including C/2011 W3 Lovejoy and Comet C/1887 B1 partially survived perihelion to become “headless wonders,” while five, including Comet C/1965 S1 Ikeya-Seki — which ISON is often compared to — survived perihelion passage to become one of the great comets of the 20th century.

ISON will pass inside the Roche limit of the Sun, which is a distance of 2.4 million kilometres (for fluid bodies) and will be subject to temperatures approaching 5,000 degrees Fahrenheit on closest approach.

ISON is a first time visitor to the inner solar system. Discovered on September 21st, 2012 by Russian researchers Artyom Novichonok and Vitaly Nevsky participating in the International Scientific Optical Network, ISON will pass less than 1.2 million kilometres above the surface of the Sun on November 28th, 2013.

One interesting but little discussed factor highlighted in today’s press release was the retrograde versus prograde rotation of the cometary nucleus. A fast, prograde spin of an elongated nucleus may spell doom for ISON, as tidal forces will rip it apart. A retrograde rotator, however, is very likely to survive the encounter.

Thus far, there are no solid indications that ISON is indeed a retrograde rotator, although there are tantalizing hints that beg for further observations.

Li notes that it’s tough to infer a bias for comets like ISON to be retrograde over prograde rotators, as we’ve only got five historical comets to go by similar to ISON, and the breakdown is thus about 50/50 for and against.

ISON’s possible survival would validate both studies and their methods and give us more refined predictions for future comets.

“We’ve never discovered a sungrazer this far out,” Knight told Universe Today. “The rotation of ISON depends on the pole position (from Li’s study) and in theory, if we could get enough images, a proper morphology (for ISON) would emerge.”

Comet ISON imaged on October 5th from Long Beach, California. (Credit: Thad Szabo @AstroThad).
Comet ISON imaged on October 5th from Long Beach, California. (Credit: Thad Szabo @AstroThad).

The implications of this analysis is certainly good news for observers. If ISON survives perihelion, we would then have a brilliant dawn Christmas comet unfurling its tail off to the northeast in early December.

Of course, these findings are contrary to early cries of its demise, including the paper out of the Institute of Physics that has been circulating touting “The Impending Demise of ISON”. Read Universe Today editor Nancy Atkinson’s excellent synopsis on that, it’s a tale that just won’t seem to die.

And we’ve also done our skeptic’s duty of thoroughly debunking the mounting ISON lunacy, including its status as the harbinger for the “end of the world of the week,” as well as its inability to fulfill prophecy. But if we get a surge in ISON next month as researchers suggest, we fully expect the accompanying hype to crest as well.

The most recent observations put ISON at about +10th magnitude as it currently crosses the constellation Leo, near Mars and Regulus in the morning sky. We recently did an observing post tracking its plunge to perihelion in late November, and we’ve been diligently hunting for ISON with binoculars every morning pre-dawn.

We’re glad to have some positive science to report on for ISON. Things are looking up for a fine show come early December!

-Read the PSI press release on  JianYang Li’s findings as well as the original paper on ISON’s survival prospects by Matthew Knight.