What’s the Bare Minimum Number of People for a Mars Habitat?

Astronauts on Mars will need oxygen. There's oxygen in the atmosphere, but only small amounts. But there's lots of subterranean water on Mars, and that means there's lots of oxygen, too. (Credit: NASA)

A recent preprint paper examines the minimum number of people required to maintain a feasible settlement on Mars while accounting for psychological and behavioral factors, specifically in emergency situations. This study was conducted by a team of data scientists from George Mason University and holds the potential to help researchers better understand the appropriate conditions for a successful long-term Mars settlement, specifically pertaining to how those settlers will get along during all situations. But why is it important to better understand the psychological factors pertaining for a potential future Mars colony?

Continue reading “What’s the Bare Minimum Number of People for a Mars Habitat?”

NASA Seeks Industry Proposals for Next-Generation Lunar Rover

Artist rendition of NASA's next-generation Lunar Terrain Vehicle traversing the lunar surface. (Credit: NASA)

As Artemis II gets ready to launch in November 2024, NASA recently announced it is pursuing contract proposals from private companies for the development of a next-generation Lunar Terrain Vehicle (LTV) to be used for crewed missions starting with Artemis V, which is currently scheduled for 2029. NASA has set a due date for the proposals of July 10, 2023, at 1:30pm Central Time, with the announcement for rewarded contracts to occur in November 2023.

Continue reading “NASA Seeks Industry Proposals for Next-Generation Lunar Rover”

Exploring Lava Tubes on Other Worlds Will Need Rovers That Can Work Together

Artist's rendition of autonomous rovers using the breadcrumb style communication network within a lava tube. They are exploring and collecting data, which is then relayed back to the mother rover at the tube's entrance, which then relays the data to an orbiter or a blimp. (Credit: John Fowler/Wikimedia Commons, Mark Tarbell and Wolfgang Fink/University of Arizona)

Planetary exploration, specifically within our own Solar System, has provided a lifetime of scientific knowledge about the many worlds beyond Earth. However, this exploration, thus far, has primarily been limited to orbiters and landers/rovers designed for surface exploration of the celestial bodies they visit. But what if we could explore subsurface environments just as easily as we’ve been able to explore the surface, and could some of these subsurface dwellings not only shelter future astronauts, but host life, as well?

Continue reading “Exploring Lava Tubes on Other Worlds Will Need Rovers That Can Work Together”

The International Space Station Gets a Clean Bill of Health. Despite a Few Opportunistic Microbes, the Station is “Safe” for Astronauts

In a recent study published in Microbiome, a team of researchers led by NASA’s Jet Propulsion Laboratory conducted a five-year first-of-its-kind study investigating the microbiome (environmental profile) of the International Space Station (ISS). The purpose of the study was to address “the introduction and proliferation of potentially harmful microorganisms into the microbial communities of piloted spaceflight and how this could affect human health”, according to the paper.

Continue reading “The International Space Station Gets a Clean Bill of Health. Despite a Few Opportunistic Microbes, the Station is “Safe” for Astronauts”

Would Mark Watney Have Survived in Real Life, and What This Can Teach Us About Sending Humans to Mars

NASA astronaut, Dr. Mark Watney played by Matt Damon, as he’s stranded on the Red Planet in ‘The Martian’. (Credit: 20th Century Fox)

We want to send humans to Mars eventually, and while this will be both a historic and exciting journey, it could also be tragic and terrible, and we must also address the potential pitfalls and risks of such an adventure. The intent behind this is to allow fans of space exploration to consider the full picture of such an endeavor. The good, the bad, and the ugly.

Continue reading “Would Mark Watney Have Survived in Real Life, and What This Can Teach Us About Sending Humans to Mars”

Using Virtual/Augmented Reality and Holoportation to Help Improve Mental Health for Future Mars Astronauts

We recently explored how the Apple TV+ series, For All Mankind, gives us a harsh reality check about the harshness of human space exploration. In the show, astronauts struggle, some go crazy, and a lot of them die in the pursuit of planting our flag just a little farther from home. We discussed how while For All Mankind is both science fiction and takes place in an alternate universe, our future Artemis and Mars astronauts will very likely endure the same struggles and hardships as the show’s beloved characters.

When Artemis astronauts finally land on the Moon, they’ll be there anywhere from a few days to a few months. While the Moon is only a few days travel time from Earth, Artemis astronauts may still get a little cranky being stuck in their habitat and unable to go outside without a spacesuit.

Continue reading “Using Virtual/Augmented Reality and Holoportation to Help Improve Mental Health for Future Mars Astronauts”

‘For All Mankind’ Gives Harsh Reality Check About Human Space Exploration

Credit: Shisma; permission to share under the Creative Commons Attribution-Share Alike 4.0 International license.

* Warning: Mild Spoilers Ahead *

The Apple TV+ series, For All Mankind, just wrapped up Season 3 and is a smash hit for both critics and fans, garnering Rotten Tomatoes ratings of 90% and 81%, respectively. It’s a show that (probably) came about from the Amazon hit, The Man in the High Castle, which depicted a world after the Allies lost World War II, and also garnered favorable ratings of 84% and 81%, respectively, having both fantastic characters and writing.

Continue reading “‘For All Mankind’ Gives Harsh Reality Check About Human Space Exploration”

What is ISRU, and How Will it Help Human Space Exploration?

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. How will they store power on the Moon? 3D printed batteries could help. Credit: NASA

As Artemis 1 prepares for its maiden launch with the goal of putting astronauts back on the Moon’s surface within the next few years, the next question is how will astronauts live and survive its surface? Will we constantly ferry all the necessary supplies such as water and food from Earth, or could astronauts learn to survive on their own? These are questions that a discipline known as ISRU hopes to answer both now and in the years to come. But what is ISRU, and how will it help advance human space exploration as we begin to slowly venture farther away from the only home we’ve ever known?

Continue reading “What is ISRU, and How Will it Help Human Space Exploration?”

Astronauts Going to Mars Will Receive Many Lifetimes Worth of Radiation

In a recent study published in Space Physics, an international team of researchers discuss an in-depth study examining the long-term physiological effects of solar radiation on astronauts with emphasis on future astronauts traveling to Mars, to include steps we can take to help mitigate the risk of such solar radiation exposure. The researchers hailed from the United Arab Emirates, New Zealand, India, United States, Italy, Greece, and Germany, and their study helps us better understand the in-depth, long-term health impacts of astronauts during long-term space missions, specifically to Mars and beyond.

Continue reading “Astronauts Going to Mars Will Receive Many Lifetimes Worth of Radiation”

NASA’s Space Launch System Gets Tentative Launch Date of August 29th

NASA has announced tentative placeholder launch dates for its beast of a rocket, the Space Launch System (SLS), on its maiden flight to deep space. While work still needs to be accomplished to ensure its launch, the tentative dates are currently August 29th, September 2nd, and September 5th. While NASA stressed these are not set dates, the announcement nonetheless puts SLS closer than ever to flight.

The maiden launch of the most powerful rocket ever built comes after years of budget increases and delays. Funding for SLS was approximately $1.5 billion in 2011 but has increased almost every year until it hit $2.5 billion in 2021. This came after Congress mandated SLS “operational capability…not later than December 31, 2016”, but has faced countless delays since then due to audits and poor management.

Continue reading “NASA’s Space Launch System Gets Tentative Launch Date of August 29th”