What Is This Empty Hole In Space?

The dark nebula LDN 483 imaged by ESO's La Silla Observatory in Chile (ESO)

What may appear at first glance to be an eerie, empty void in an otherwise star-filled scene is really a cloud of cold, dark dust and molecular gas, so dense and opaque that it obscures the distant stars that lie beyond it from our point of view.

Similar to the more well-known Barnard 68, “dark nebula” LDN 483 is seen above in an image taken by the MPG/ESO 2.2-meter telescope’s Wide Field Imager at the La Silla Observatory in Chile.

While it might seem like a cosmic no-man’s-land, no stars were harmed in the making of this image – on the contrary, dark nebulae like LDN 483 are veritable maternity wards for stars. As their cold gas and dust contracts and collapses new stars form inside them, remaining cool until they build up enough density and gravity to ignite fusion within their cores. Then, shining brightly, the young stars will gradually blast away the remaining material with their outpouring wind and radiation to reveal themselves to the galaxy.

The process may take several million years, but that’s just a brief flash in the age of the Universe. Until then, gestating stars within LDN 483 and many other clouds like it remain dim and hidden but keep growing strong.

Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)
Wide-field view of the LDN 483 region. (Credit: ESO and Digitized Sky Survey 2)

Located fairly nearby, LDN 483 is about 700 light-years away from Earth in the constellation Serpens.

Source: ESO

What Created This Huge Crater In Siberia?

An 80-meter-wide crater recently discovered in northern Siberia (Video screenshot)

What is it with Russia and explosive events of cosmic origins? The 1908 Tunguska Explosion, the Chelyabinsk bolide of February 2013, and now this: an enormous 80-meter 60-meter wide crater discovered in the Yamal peninsula in northern Siberia!

To be fair, this crater is not currently thought to be from a meteorite impact but rather an eruption from below, possibly the result of a rapid release of gas trapped in what was once frozen permafrost. The Yamal region is rich in oil and natural gas, and the crater is located 30 km away from its largest gas field. Still, a team of researchers are en route to investigate the mysterious hole further.

Watch a video captured by engineer Konstantin Nikolaev during a helicopter flyover below:

In the video the Yamal crater/hole has what appear to be streams of dry material falling into it. Its depth has not yet been determined. (Update: latest measurements estimate the depth of the hole to be 50-70 meters. Source.)

Bill Chappell writes on NPR’s “The Two-Way”:

“The list of possible natural explanations for the giant hole includes a meteorite strike and a gas explosion, or possibly an eruption of underground ice.”

Dark material around the inner edge of the hole seems to suggest high temperatures during its formation. But rather than the remains of a violent impact by a space rock — or the crash-landing of a UFO, as some have already speculated — this crater may be a particularly explosive result of global warming.

According to The Siberian Times:

“Anna Kurchatova from Sub-Arctic Scientific Research Centre thinks the crater was formed by a water, salt and gas mixture igniting an underground explosion, the result of global warming. She postulates that gas accumulated in ice mixed with sand beneath the surface, and that this was mixed with salt – some 10,000 years ago this area was a sea.”

The crater is thought to have formed sometime in 2012.

Read more at The Siberian Times and NPR.

UPDATE July 17: A new video (in Russian) of the hole from the research team has come out, and apparently it’s been made clear that it’s not the result of a meteorite. Exactly what process did produce it is still unknown, but rising temperatures are still thought to be a factor. Watch below (via Sploid).

(If any Russian-speaking UT readers would like to translate what’s being said, feel free to share in the comments below.)

Also check out the latest photos from the research expedition at The Siberian Times here.

UPDATE Nov. 13: Once the water in these holes froze solid scientists were able to enter and explore the bottoms. According to an article published on The Guardian, “eighty percent of the crater appears to be made up of ice and there are no traces of a meteorite strike.”

Researchers descend into an ice-covered Yamal Crater in Siberia. Credit: Vladimir Pushkarev/Russian Centre of Arctic Exploration (via Siberian Times) 
Researchers descend into an ice-covered Yamal Crater in Siberia. Credit: Vladimir Pushkarev/Russian Centre of Arctic Exploration (via Siberian Times)

“As of now we don’t see anything dangerous in the sudden appearance of such holes, but we’ve got to study them properly to make absolutely sure we understand the nature of their appearance and don’t need to be afraid about them.”

– Vladimir Pushkarev, Director, Russian Center of Arctic Exploration

See more photos from inside the crater from the Russian Center of Arctic Exploration on The Siberian Times here.

Warning Shot: a “Bullet Hole” on the ISS

A hole from a meteorite in the Space Station's solar array

Canadian astronaut and Expedition 35 commander Chris Hadfield just shared this photo on Twitter, showing a portion of one of the solar array wings on the ISS… with a small but very visible hole made by a passing meteoroid in one of the cells.

In typical poetic fashion, Commander Hadfield referred to the offending object as “a small stone from the universe.”

“Glad it missed the hull,” he added.

Hole in an ISS solar cell made by a meteoroid
Hole in an ISS solar cell made by a meteoroid

While likened to a bullet hole, whatever struck the solar panel was actually traveling much faster when it hit. Most bullets travel at a velocity of around 1,000-2,000 mph (although usually described in feet per second) but meteoroids are traveling through space at speeds of well over 25,000 mph — many times faster than any bullet!

Luckily the ISS has a multi-layered hull consisting of layers of different materials (depending on where the sections were built), providing protection from micrometeorite impacts. If an object were to hit an inhabited section of the Station, it would be slowed down enough by the different layers to either not make it to the main hull or else merely create an audible “ping.”

Unnerving, yes, but at least harmless. Still, it’s a reminder that the Solar System is still very much a shooting gallery and our spacefaring safety relies on the use of technology to protect ourselves.

Image: NASA / Chris Hadfield

Fact: The 110 kilowatts of power for the ISS is supplied by an acre of solar panels!