ESO’s Latest Dramatic Landscape

The universe is stunning. Images from even the most modest telescopes can unveil its brilliant beauty. But couple that with a profound reason — our ability to question and understand the physical laws that dominate that brilliant beauty — and the image transforms into something much more spectacular.

Take ESO’s latest image of two dramatic star formation regions in the southern Milky Way. John Herschel first observed the cluster on the left in 1834, during his three-year expedition to systematically survey the southern skies near Cape Town. He described it as a remarkable object and thought it might be a globular cluster. But future studies (and not to mention more dramatic images from larger telescopes) enriched our understanding, demonstrating that it was not an old globular but a young open cluster.

This chart shows the constellation of Carina (The Keel) and includes all the stars that can be seen with the unaided eye on a clear and dark night. This region of the sky includes some of the brightest star formation regions in the Milky Way. The location of the distant, but very bright and compact, open star cluster NGC 3603 is marked. This object is not spectacular in small telescopes, appearing as just a tight clump of stars surrounded by faint nebulosity. Credit: ESO
This chart shows the constellation of Carina and includes all the stars that can be seen with the unaided eye on a clear and dark night. The location of the open star cluster NGC 3603 is marked. This object is not spectacular in small telescopes, appearing as just a tight clump of stars surrounded by faint nebulosity. Credit: ESO

The Wide Field Imager at ESO’s La Silla Observatory in Chile recently captured the image again. The bright region on the left is the star cluster NGC 3603, located 20,000 light-years away in the Carina-Sagittarius spiral arm of the Milky Way galaxy. The bright region on the right is a collection of glowing gas clouds known as NGC 3576, located only 10,000 light-years away.

Stars are born in enormous clouds of gas and dust, largely hidden from view. But as small pockets in these clouds collapse under the pull of gravity, they become so hot they ignite nuclear fusion, and their light clears away — and brightens — the surrounding gas and dust.

Nearby regions of hydrogen gas are heated, and therefore partially ionized, by the ultraviolet radiation given off by the brilliant hot young stars. These regions, better known as HII regions, can measure several hundred light-years in diameter, and the one surrounding NGC 3603 has the distinction of being the most massive known in our galaxy.

Not only is NGC 3603 known for having the most massive HII region, it’s known for having the highest concentration of massive stars that have been discovered in our galaxy so far. At the center lies a Wolf-Rayet star system. These stars begin their lives at 20 times the mass of the Sun, but evolve quickly while shedding a considerable amount of their matter. Intense stellar winds blast the star’s surface into space at  several million kilometers per hour.

Where NGC 3603 is notable for its extremes, NGC 3576 is notable for its extremities — the two huge curved objects in the outreaches of the cluster. Often described as the curled horns of a ram, these odd filaments are the result of stellar winds from the hot, young stars within the central regions of the nebula. The stars have blown the dust and gas outwards across a hundred light-years.

Additionally, the two dark silhouetted areas near the top of the nebula are known as Bok globules, dusty regions found near star formation sights. These dark clouds absorb nearby light and offer potential sites for the future formation of stars. They may further sculpt the dramatic landscape above, which is the smallest slice of our stunning universe

Loading player…

Forging Stars – Peering Into Starbirth and Death

Some 160,000 light years away towards the constellation of Dorado (the Swordfish), is an amazing area of starbirth and death. Located in our celestial neighbor, the Large Magellanic Cloud, this huge stellar forge sculpts vast clouds of gas and dust into hot, new stars and carves out ribbons and curls of nebulae. However, in this image taken by ESO’s Very Large Telescope, there’s more. Stellar annihilation also awaits and shows itself as bright fibers left over from a supernova event.

For southern hemisphere observers, one of our nearest galactic neighbors, the Large Magellanic Cloud, is a well-known sight and holds many cosmic wonders. While the image highlights just a very small region, try to grasp the sheer size of what you are looking at. The fiery forge you see is several hundred light years across, and the factory in which it is contained spans 14,000 light years. Enormous? Yes. But compared to the Milky Way, it’s ten times smaller.

Even at such a great distance, the human eye can see many bright regions where new stars are actively forming, such as the Tarantula Nebula. This new image, taken by ESO’s Very Large Telescope at the Paranal Observatory in Chile, explores an area cataloged as NGC 2035 (right), sometimes nicknamed the Dragon’s Head Nebula. But, just what are we looking at?

The Dragon’s Head is an HII region, more commonly referred to as an emission nebula. Here, young stars pour forth energetic radiation and illuminate the surrounding clouds. The radiation tears electrons away from the atoms contained within the gas. These atoms then gel again with other atoms and release light. Swirling in the mix is dark dust, which absorbs the light and creates deep shadows and create contrast in the nebula’s structure.

However, as we look deep into this image, there’s even more… a fiery finale. At the left of the photo you’ll see the results of one of the most violent events in the Universe – a supernova explosion. These troubled tendrils are all that’s left of what once was a star and its name is SNR 0536-67.6. Perhaps when it exploded, it was so bright that it was capable of outshining the Magellanic Cloud… fading away over the weeks or months that followed. However, it left a lasting impression!

Original Story Source: ESO Image Release.

SOFIA Reveals Star-Forming Region W40

[/caption]

Around 1957 light years away, a dense molecular cloud resides beside an OB star cluster locked in a massive HII region. The hydrogen envelope is slowly beginning to billow out and separate itself from the molecular gas, but we’re not able to get a clear picture of the situation thanks to interfering dust. However, by engaging NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA), we’re now able to take one of the highest resolution mid-infrared looks into the heart of an incredible star-forming region known as W40 so far known to science.

Onboard a modified 747SP airliner, the Faint Object infraRed Camera for the SOFIA Telescope (FORCAST) has been hard at work utilizing its 2.5 meter (100″) reflecting telescope to capture data. The composite image shown above was taken at wavelengths of 5.4, 24.2 and 34.8 microns. Why this range? Thanks to the high flying SOFIA telescope, we’re able to clear Earth’s atmosphere and “get above” the ambient water vapor which blocks the view. Not even the highest based terrestrial telescope can escape it – but FORCAST can!

With about 1/10 the UV flux of the Orion Nebula, region W40 has long been of scientific interest because it is one of the nearest massive star-forming regions known. While some of its OB stars have been well observed at a variety of wavelengths, a great deal of the lower mass stars remain to be explored. But there’s just one problem… the dust hides their information. Thanks to FORCAST, astronomers are able to peer through the obscuration at W40’s center to examine the luminous nebula, scores of neophyte stars and at least six giants which tip the scales at six to twenty times more massive than the Sun.

Why is studying a region like W40 important to science? Because at least half of the Milky Way’s stellar population formed in similar massive clusters, it is possible the Solar System also “developed in such a cluster almost 5 billion years ago”. The stars FORCAST measures aren’t very bright and intervening dust makes them even more dim. But no worries, because this type of study cuts them out of dust that’s only carrying a temperature of a few hundred degrees. All that from a flying observatory!

Now, that’s cool…

Original Story Source: NASA/SOFIA News. For Further Reading: The W40 Cloud Complex and A Chandra Observation of the Obscured Star-Forming Complex W40.