Searching for Exoplanet Oceans More Challenging Than First Thought

Earth Observation of sun-glinted ocean and clouds
Earth Observation of sun-glinted ocean and clouds. Credit: NASA

[/caption]

As astronomers continue to discover more exoplanets, the focus has slowly shifted from what sizes such planets are, to what they’re made of. First attempts have been made at determining atmospheric composition but one of the most desirable finds wouldn’t be the gasses in the atmosphere, but the detection of liquid water which is a key ingredient for the formation of life as we know it. While this is a monumental challenge, various methods have been proposed, but a new study suggests that these methods may be overly optimistic.

One of the most promising methods was proposed in 2008 and considered the reflective properties of water oceans. In particular when the angle between a light source (a parent star) and an observer is small, the light is not reflected well and ends up being scattered into the ocean. However, if the angle is large, the light is reflected. This effect can be easily seen during sunset over the ocean when the angle is nearly 180° and the ocean waves are tipped with bright reflections and is known as specular reflection. This effect is illustrated in orbit around our own planet above and such effects were used on Saturn’s moon Titan to reveal the presence of lakes.

Translating this to exoplanets, this would imply that planets with oceans should reflect more light during their crescent phases than their gibbous phase. Thus, they proposed, we might detect oceans on extrasolar planets by the “glint” on their oceans. Even better, light reflecting off a smoother surface like water tends to be more polarized than it might be otherwise.

The first criticisms of this hypothesis came in 2010 when other astronomers pointed out that similar effects may be produced on planets with a thick cloud layer could mimic this glinting effect. Thus, the method would likely be invalid unless astronomers were able to accurately model the atmosphere to take its contribution into consideration.

The new paper brings additional challenges by further considering the way material would likely be distributed. Specifically, it is quite likely that planets in the habitable zones without oceans may have polar ice caps (like Mars) which are more reflective all around. Since the polar regions make up a larger percentage of the illuminated body in the crescent phase than during the gibbous, this would naturally lead to a relative diminishing in overall reflectivity and could give false positives for a glint.

This would be especially true for planets that are more oblique (are “tilted”). In this case, the poles receive more sunlight which makes the reflections from any ice caps even more pronounced and mask the effect further. The authors of the new study conclude that this as well as the other difficulties “severely limits the utility of specular reflection for detecting oceans on exoplanets.”

Cassini Slips Through Enceladus’ Spray

Cassini's latest view of Enceladus' icy spray, acquired on April 14, 2012.

[/caption]

Spray it again, Enceladus! This Saturday the Cassini spacecraft paid another visit to Enceladus, Saturn’s 318-mile-wide moon that’s become famous for its icy geysers.During its latest close pass Cassini got a chance to “taste” Enceladus’ spray using its ion and neutral mass spectrometer, giving researchers more information on what sort of watery environment may be hiding under its frozen, wrinkled surface.

The image above shows a diagonal view of Enceladus as seen from the night side. (The moon’s south pole is aimed at a 45-degree angle to the upper right.) Only by imaging the moon backlit by the Sun can the geysers of fine, icy particles be so well seen.

During the flyby Cassini passed within 46 miles (74 km) of Enceladus’ surface.

This image was captured during the closest approach, revealing the distressed terrain of Enceladus’ south pole. Although a bit blurry due to the motion of the spacecraft, boulders can be made out resting along the tops of high , frozen ridges. (Edited from the original raw image to enhance detail.)

Enceladus' southern fissures, the source of its spray. (NASA/JPL/SSI/J. Major)

This flyby occurred less than three weeks after Cassini’s previous visit to Enceladus. Why pay so much attention to one little moon?

Basically, it’s the one place in our solar system that we know of where a world is spraying its “habitable zone” out into space for us to sample.

“More than 90 jets of all sizes near Enceladus’s south pole are spraying water vapor, icy particles, and organic compounds all over the place,” said Carolyn Porco, planetary scientist and Cassini Imaging science team leader, during a NASA interview in March. “Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth’s oceans.

“In the end, it’s the most promising place I know of for an astrobiology search,” said Porco. (Read the full interview here.)

A crescent-lit Enceladus sprays its "habitable zone" out into space.

Not to be left out, Tethys was also paid a visit by Cassini. The 662-mile-wide moon boasts one of the most extensively cratered surfaces in the Solar System, tied with its sister moons Rhea and Dione. In this raw image captured by Cassini on April 14, we can see some of the moon’s ancient, larger craters, including Melanthius with its enormous central peak.

Saturn's moon Tethys, imaged by Cassini on April 14, 2012.

Cassini passed Tethys at a distance of about 6,000 miles (9000 km) after departing Enceladus. Cassini’s composite infrared spectrometer looked for patterns in Tethys’ thermal signature while other instruments studied the moon’s geology.

Image credits: NASA/JPL/Space Science Institute. See more images from the Cassini mission on the CICLOPS site here.

 

HARPS Tunes In On Habitable Planet

Artist Concept of Extra-Solar Planet Courtesy of NASA

[/caption]

Using the High Accuracy Radial velocity Planet Searcher (HARPS), a team of scientists at University of Geneva, Switzerland, led by the Swiss astronomer Stephane Udry made a sound discovery… an Earth-like planet orbiting star HD 85512. Located about 36 light years away in the constellation of Vela, this extrasolar planet is one of the smallest to be documented in the “habitable zone” and could very well be a potential home to living organisms.

Circling its parent star every 54 days at about the quarter of the distance which Earth orbits the Sun, the newly discovered planet shows every sign of a temperate climate and a possibility of water. However, the rocky little world would need to exhibit some very cloudy skies to make the grade.

“We model rocky planets with H2O/CO2/N2 atmospheres, representative of geological active planets like Earth, to calculate the maximum Bond albedo as a function of irradiation and atmosphere composition and the edges of the HZ for HD 85512 b. These models represent rocky geological active planets and produce a dense CO2 atmosphere at the outer edge, an Earth-like atmosphere in the middle, and a dense H2O atmospheres at the inner edge of the HZ.” says the team. “The inner limit for the 50% cloud case corresponds to the “Venus water loss limit”, a limit that was empirically derived from Venus position in our Solar System (0.72 AU).”

But there’s always from one extreme to another when it comes to a planet being in just the right place. “The inner edge of the (Habitable zone) denotes the location where the entire water reservoir can be vaporized by runaway greenhouse conditions, followed by the photo-dissociation of water vapor and subsequent escape of free hydrogen into space. The outer boundary denotes the distance from the star where the maximum greenhouse effect fails to keep CO2 from condensing permanently, leading to runaway glaciation,” says the Kaltenegger/Udry/Pepe study.

While the whole scenario might not be exciting to some, the study is helping to lay a very solid foundation for evaluating current and future planet candidates for life supporting conditions. “A larger sample will improve our understanding of this field and promises to explore a very interesting parameter space that indicates the potential coexistence of extended H/He and H2O dominated atmospheres as well as rocky planet atmospheres in the same mass and temperature range.” says Kaltenegger. “HD 85512 b is, with Gl 581 d, the best candidate for exploring habitability to date, a planet on the edge of habitability.”

And one step closer to better understanding what’s out there…

For further reading: A Habitable Planet around HD 85512?.

The Habitability of Gliese 581d

The Gliese 581 system has been making headlines recently for the most newly announced planet that may lie in the habitable zone. Hopes were somewhat dashed when we were reminded that the certainty level of its discovery was only 3 sigma (95%, whereas most astronomical discoveries are at or above the 99% confidence level before major announcements), but the Gliese 581 system may yet have more surprises. When the second planet, Gliese 581d, was first discovered, it was placed outside of the expected habitable zone. But in 2009, reanalysis of the data refined the orbital parameters and moved the planet in, just to the edge of the habitable zone. Several authors have suggested that, with sufficient greenhouse gasses, this may push Gliese 581d into the habitable zone. A new paper to be published in an upcoming issue of Astronomy & Astrophysics simulates a wide range of conditions to explore just what characteristics would be required.

The team, led by Robin Wordsworth at the University of Paris, varied properties of the planet including surface gravity, albedo, and the composition of potential atmospheres. Additionally, the simulations were also run for a planet in a similar orbit around the sun (Gliese 581 is an M dwarf) to understand how the different distribution of energy could effect the atmosphere. The team discovered that, for atmospheres comprised primarily of CO2, the redder stars would warm the planet more than a solar type star due to the CO2 not being able to scatter the redder light as well, thus allowing more to reach the ground.

One of the potential roadblocks to warming the team considered was the formation of clouds. The team first considered CO2 clouds which would be likely towards the outer edges of the habitable zone and form on Mars. Since clouds tend to be reflective, they would counteract warming effects from incoming starlight and cool the planet. Again, due to the nature of the star, the redder light would mitigate this somewhat allowing more to penetrate a potential cloud deck.

Should some H2O be present its effects are mixed. While clouds and ice are both very reflective, which would decrease the amount of energy captured by a planet, water also absorbs well in the infrared region. As such, clouds of water vapor can trap heat radiating from the surface back into space, trapping it and resulting in an overall increase. The problem is getting clouds to form in the first place.

The inclusion of nitrogen gas (common in the atmospheres of planets in the solar system) had little effect on the simulations. The primary reason was the lack of absorption of redder light. In general, the inclusion only slightly changed the specific heat of the atmosphere and a broadening of the absorption lines of other gasses, allowing for a very minor ability to trap more heat. Given the team was looking for conservative estimates, they ultimately discounted nitrogen from their final considerations.

With the combination of all these considerations, the team found that even given the most unfavorable conditions of most variables, should the atmospheric pressure be sufficiently high, this would allow for the presence of liquid water on the surface of the planet, a key requirement for what scientists maintain is critical for abiogenesis. The favorable merging of characteristics other than pressure were also able to produce liquid water with pressures as low as 5 bars. The team also notes that other greenhouse gasses, such as methane, were excluded due to their rarity, but should the exist, the ability for liquid water would be improved further.

Ultimately, the simulation was only done as a one dimensional model which essentially considered a thin column of the atmosphere on the day side of the planet. The team suggests that, for a better understanding, three dimensional models would need to be created. In the future, they plan to use just such modeling which would allow for a better understanding of what was happening elsewhere on the planet. For example, should temperatures fall too quickly on the night side, this could lead to the condensation of the gasses necessary and put the atmosphere in an unstable state. Additionally, as we discover more transiting exoplanets and determine their atmospheric properties from transmission spectra, astronomers will better be able to constrain what typical atmospheres really look like.

Habitable Planet

Habitable zone

[/caption]
The term “habitable planet” seems rather broad. Does it mean that it is habitable for humans? Is it merely capable of supporting some other form of life? Quite simply, planetary habitability refers to a planet’s ability to both develop and sustain life.

Unfortunately, scientists have had to base their calculations for a habitable planet on Earth’s characteristics and do some guesswork. Some of the factors that astronomers look at when evaluating a planet’s habitability are mass, surface characteristics, orbit, rotation, and geochemistry.

One of the most basic assumptions that astronomers make when searching for a habitable planet is that it has to be terrestrial. This means that the planet is composed mostly of rock and metal and has a solid surface. A gas giant on the other hand has no solid surface, which makes it an unlikely candidate for supporting life. Mass is also an important factor, because low mass planets have too little gravity to keep their atmosphere. They also do not have live volcanoes and other geologic activity, which helps temper the surface to support life, because they lose energy as a result of a small diameter. Planets with high orbital eccentricity – the irregularity of the orbit – have a greater fluctuation in surface temperatures because they are closer to the Sun at some points and much further away at other points in the orbit. In order to be habitable, a planet has to have a moderate rotation. If there is no axial tilt then there are no change of seasons, and if the axial tilt is too severe than the planet will have a difficult time achieving homeostasis – balance. Another assumption astronomers make when determining planetary habitability is that life on other planets will also be carbon-based. The four elements most important for life are oxygen, nitrogen, carbon, and hydrogen. With so many considerations, it is not surprising that scientists have a difficult time determining whether a planet can sustain life.

Astronomers are searching for habitable planets in other solar systems too. They have started by searching in the habitable zones of other solar systems. A habitable zone is the region in space with conditions most favorable for supporting life. Astronomers are unsure exactly what the extent of the habitable zone of our Solar System is. Earth is located in the center of it, but it may even extend as far as Mars, and it almost reaches Venus. The habitable zone and planetary habitability focus on carbon-based life, so they do not help predict other forms of life.

Universe Today has a number of articles you should take a look at including the habitable zone and number of habitable planets.

You should also check out habitable planets and habitable planets are common.

Astronomy Cast has an episode on the search for water on Mars, which tells why finding water is a clue to finding life.