Watch This Amazing Video of an Exoplanet in Motion

An amazing .gif animation of Beta Pictoris in orbit. Image credit: M. Millar-Blanchaer, University of Toronto/R. Marchis (SETI Institute)

Exoplanet Beta Pic b orbiting Beta Pictoris from Dunlap Institute on Vimeo.

Just. Wow. The motion of an alien world, reduced to a looping .gif. We truly live in an amazing age. A joint press release out of the Gemini Observatory and the University of Toronto demonstrates a stunning first: a sequence of direct images showing an exoplanet… in motion.

The world imaged is Beta Pictoris b, about 19 parsecs (63 light years) distant in the southern hemisphere constellation Pictor the Painter’s Easel. The Gemini Planet Imager (GPI), working in concert with the Gemini South telescope based in Chile captured the sequence.

The images span an amazing period of a year and a half, starting in November 2013 and running through April of earlier this year. Beta Pictoris b has an estimated 22 year orbital period… hey, in the year 2035 or so, we’ll have a complete animation of its orbit!

Current estimates place Beta Pictoris b in the 7x Jupiter mass range, about plus or minus 4 Jupiter masses… and yes, the high end of that range is flirting with the lower boundary for a sub-stellar brown dwarf. Several exoplanet candidates blur this line, and we suspect that the ‘what is a planet debate?’ that has plagued low mass worlds will one day soon extend into the high end of the mass spectrum as well.

An annotated diagram of the Beta Pictoris system. Image credit: ESO/A.-M Lagrange et al.
An annotated diagram of the Beta Pictoris system. Image credit: ESO/A.-M Lagrange et al.

Beta Pictoris has long been a target for exoplanetary research, as it is known to host a large and dynamic debris disk spanning 4,000 astronomical units across. The host star Beta Pictoris is 1.8 times as massive as our Sun, and 9 times as luminous. Beta Pic is also a very young star, at an estimated age of only 8-20 million years old. Clearly, we’re seeing a very young solar system in the act of formation.

Orbiting its host star 9 astronomical units distant, Beta Pictoris b has an orbit similar to Saturn’s. Place Beta Pictoris b in our own solar system, and it would easily be the brightest planet in the sky.

The Heavyweight world B Pictoris b vs planets in our solar system... note the rapid rotation rate! Image credit: ESO/I. Snellen (Leiden University)
The Heavyweight world B Pictoris b vs planets in our solar system… note the rapid rotation rate! Image credit: ESO/I. Snellen (Leiden University)

“The images in the series represent the most accurate measurements of a planet’s position ever made,” says astronomer Maxwell Millar-Blanchaer of the Department of Astronomy and Astrophysics at the University of Toronto in a recent press release. ‘With the GPI, we’re able to see both the disk and the planet at the exact same time. With our combined knowledge of the disk and the planet we’re really able to get a sense of the planetary system’s architecture and how everything interacts.”

A recent paper released in the Astrophysical Journal described observations of Beta Pictoris b made with the Gemini Planet Imager. As with bodies in our own solar system, refinements in the orbit of Beta Pictoris b will enable astronomers to understand the dynamic relationship it has with its local environment. Already, the orbit of Beta Pictoris b appears inclined out of our line of sight in such a way that a transit of the stellar disk is unlikely to occur. This is the case with most exoplanets, which elude the detection hunters such as the Kepler space telescope. As a matter of fact, watching the animation, it looks like Beta Pictoris b will pass behind the occluding disk and out of view of the Gemini Planet Imager in the next few years.

The location of Beta Pictoris in the southern hemisphere sky. Image credit: Stellarium
The location of Beta Pictoris in the southern hemisphere sky. Image credit: Stellarium

“It’s remarkable that Gemini is not only able to directly image exoplanets but is also capable of effectively making movies of them orbiting their parent star,” Says National Science Foundation astronomy division program director Chris Davis in Monday’s press release. The NSF is one of five international partners that funds the Gemini telescope program. “Beta Pic is a special target. The disk of gas and dust from which planets are currently forming was one of the first observed and is a famous laboratory for the study of young solar systems.”

The Gemini Planet Imager is part of the GPI Exoplanet Survey (GPIES), which discovered its first exoplanet 51 Eridani b just last month. The survey will target 600 stars over the next three years. The current tally of known exoplanets currently sits at 1,958 and counting, with thousands more in the queue courtesy of Kepler awaiting confirmation.

And as new spacecraft such as the Transiting Exoplanet Survey Satellite (TESS) take to orbit in 2018, we wouldn’t be surprised if the tally of exoplanets hits five digits by the end of this decade.

An amazing view of a brave new world in motion. It’s truly a golden age of exoplanetary science, with more exciting discoveries to come!

Prying Planets Out of The Shadows: The Gemini Planet Imager’s First Year of Light

Image credit: Marshall Perrin (Space Telescope Science Institute), Gaspard Duchene (UC Berkeley), Max Millar-Blanchaer (University of Toronto), and the GPI Team.

This year marks the 20th anniversary of 51 Peg b, the first exoplanet detected around a Sun-like star. And although the number of sheer detections in the years since have been remarkable, it’s also remarkable how little we still know about these alien worlds, save for their distances from their host stars, their radii, and sometimes their masses.

But the ability to directly image these worlds provides the opportunity to change all that. “It’s the tip of the iceberg,” said Marshall Perrin from the Space Telescope Science Institute in a press conference at the American Astronomical Society’s meeting earlier today. “In the long run, we think that imaging offers perhaps the best path to characterizing rocky planets on Earth-like orbits.”

Perrin highlighted two intriguing results from the Gemini Planet Imager (GPI), an instrument designed not only to resolve the dim light of an exoplanet, but also analyze a planet’s atmospheric temperature and composition.

HR 8799

The first system observed with GPI was the well-known HR 8799 system, a large star orbited by four planets, located 130 light-years away. Previously, the Keck telescope had measured the atmosphere of one of the planets, HR 8799c, in six hours of observing time. But GPI matched that in only a half hour of telescope time and in less-than-ideal weather too. So the team quickly turned to the planet’s twin, HR 8799d.

Image credit: Patrick Ingraham (Stanford University), Mark Marley (NASA Ames), Didier Saumon (Los Alamos National Laboratory) and the GPI Team.
The spectra of planets HR 8799c and HR 8799d. Image credit: Patrick Ingraham (Stanford University) / Mark Marley (NASA Ames) / Didier Saumon (Los Alamos National Laboratory) / the GPI Team.

“What we found really surprised us,” said Perrin. “These two planets have been known to have the same brightness and the same broadband colors. But looking at their spectra, they’re surprisingly different.”

Perrin and his colleagues think the likely culprit is clouds. It’s possible that one planet has a uniform cloud cover, whereas the other planet has a more patchy cloud cover, allowing astronomers to see deeper into the atmosphere. Perrin, however, cautions that this explanation is still under interpretation.

“The fact that GPI was able to extract new knowledge from these planets on the first commissioning run in such a short amount of time, and in conditions that it was not even designed to work, is a real testament to how revolutionary GPI will be to the field of exoplanets,” said GPI team member Patrick Ingraham from Stanford University in a news release.

HR 4796A

Perrin’s presentation also introduced never-seen details in the dusty ring around the young star HR 4796A. GPI also has the unique ability of detecting only polarized light, which sheds light on different physical properties.

Although the details are fairly technical, “the short version is that reconciling the patterns we see in polarized intensity and in total intensity has forced us to think of this not as a very diffuse disk but one that is actually dense enough to partially opaque,” said Perrin.

The disk may be roughly analogous to one of Saturn’s rings.

“GPI now is moving into an exciting phase of full operations,” said Perrin, concluding his talk. “We’ll be opening up a lot of new discoveries hopefully over the next few years. And in the long run taking these technologies and scaling them to future 30-meter telescopes, and perhaps large telescopes in space, to continue direct imaging and push down toward the Earth-like planet regime.”