Curiosity Halfway to Red Planet Touchdown

[/caption]

As of today, NASA’s car sized Curiosity rover has reached the halfway point in her 352 million mile (567 million km) journey to Mars – No fooling on April 1, 2012.

It’s T Minus 126 days until Curiosity smashes into the Martian atmosphere to brave the hellish “6 Minutes of Terror” – and, if all goes well, touch down inside Gale Crater at the foothills of a Martian mountain taller than the tallest in the continental United States – namely Mount Rainier.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

The Curiosity Mars Science laboratory (MSL) rover was launched from sunny Florida on Nov. 26, 2011 atop a powerful Atlas V rocket for an 8.5 month interplanetary cruise from the Earth to Mars and is on course to land on the Red Planet early in the morning of Aug. 6, 2012 EDT and Universal Time (or Aug. 5 PDT).

Curiosity’s Position in Space on April 1, 2012 - Halfway to Mars
This roadmap shows Curiosity's flight path through the Solar System - From Earth to Mars during the 8.5 month interplanetary cruise. Credit: NASA/JPL-Caltech

On March 26, engineers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., successfully ignited the spacecrafts thrusters for the second of six planned trajectory correction maneuvers (TCM’s) to adjust the robot’s flight path during the long journey to achieve a pinpoint landing beside the Martian mountain.

“It is satisfying to get the second maneuver under our belts and know we are headed in the right direction,” said JPL’s Erisa Hines, systems lead for the maneuver. “The cruise system continues to perform very well.”

This maneuver was one-seventh as much as the flight’s first course adjustment, on Jan. 11. The cruise stage is equipped with eight thrusters grouped into two sets of four that fire as the entire spacecraft spins at two rotations per minute. The thruster firings change the velocity of the spacecraft in two ways – along the direction of the axis of rotation and also perpendicular to the axis. Altogether there were more than 60 pulsing maneuvers spaced about 10 seconds apart.

“The purpose is to put us on a trajectory to the point in the Mars atmosphere where we need to be for a safe and accurate landing,” said Mau Wong, maneuver analyst at JPL.

Atlas V rocket and Curiosity Mars rover poised at Space Launch Complex 41 at Cape Canaveral, Florida prior to Nov. 26, 2011 liftoff. Credit: Ken Kremer

Marking another crucial milestone, the flight team has also powered up and checked the status of all 10 MSL science instruments – and all are nominal.

“The types of testing varied by instrument, and the series as whole takes us past the important milestone of confirming that all the instruments survived launch,” said Betina Pavri of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., science payload test engineer for the mission. “These checkouts provide a valuable calibration and characterization opportunity for the instruments, including camera dark images and a measurement of zero pressure in the vacuum of space for the rover weather station’s pressure sensor.”

Ever since it was the first of MSL’s science instruments to be switched on three months ago, the Radiation Assessment Detector (RAD) has been collecting valuable measurements about the potentially lethal radiation environment in space and acting as a stunt double for determining the potential health effects on future human travelers to Mars.

RAD has been collecting data on the recent wave of extremely powerful solar flares erupting from the sun.

Curiosity has another 244 million kilometers to go over the next 4 months.

All hopes ride on Curiosity as America’s third and last generation of Mars rovers.

Devastating and nonsensical funding cuts to NASA’s Planetary Science budget have forced NASA to cancel participation in the 2018 ExoMars lander mission that had been joint planned with ESA, the European Space Agency. ESA now plans to forge ahead with Russian participation.

Stay tuned

Simulated view to Mars over the shoulder of Curiosity on 1 April 2012 - from current location halfway to the Red Planet. Credit: NASA/JPL-Caltech

Read Ken’s recent Curiosity feature here:
A Penny for your Curiosity on Mars

A Penny for your Curiosity on Mars

[/caption]

NASA’s huge Curiosity Mars Science Lab (MSL) rover is carrying a vintage Lincoln penny along for the long interplanetary journey to Mars – and it’s not to open the first Martian savings account.

Scientists will use the century old Lincoln penny – minted back in 1909 – as a modern age calibration target for one of Curiosity’s five powerful science cameras attached to the end of the hefty, 7 foot (2.1 meter) long robotic arm.

The car sized rover is on course to touchdown at the foothills of a towering and layered mountain inside Gale Crater in just 161 days on Aug. 6, 2012.

So far Curiosity has traveled 244 million kilometers since blasting off on Nov. 26, 2011 from Florida and has another 322 million kilometers to go to the Red Planet.

The copper penny is bundled to a shoulder joint on the rovers arm along with the other elements of the calibration target, including color chips, a metric standardized bar graphic, and a stair-step pattern for depth calibration.

The whole target is about the size of a smart phone and looks a lot like an eye vision chart in an ophthalmologist’s office. And it serves a similar purpose, which will be to check the performance of Curiosity eyes – specifically the Mars Hand Lens Imager (MAHLI) camera located at the terminus of the robotic arm.

Curiosity’s Calibration Target
Two instruments at the end of the robotic arm on NASA's Mars rover Curiosity will use calibration targets attached to a shoulder joint of the arm. Credit: NASA/JPL-Caltech

MAHLI will conduct close-up inspections of Martian rocks and soil. It can show tiny details, finer than a human hair.

The term “hand lens” in MAHLI’s name refers to the standard practice by field geologists’ of carrying a hand lens during expeditions for close up, magnified inspection of rocks they find along the way. So it’s also critical to pack various means of calibration so that researchers can interpret their results and put them into proper perspective.

MAHLI can also focus on targets over a wide range of distances near and far, from about a finger’s-width away out to the Red Planets horizon, which in this case means the mountains and rim of the breathtaking Gale Crater landing site.

“When a geologist takes pictures of rock outcrops she is studying, she wants an object of known scale in the photographs,” said MAHLI Principal Investigator Ken Edgett, of Malin Space Science Systems, San Diego, which supplied the camera to NASA.

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC
Curiosity with robotic arm extended. Calibration target is located at a shoulder joint on the arm. Photo taken just before encapsulation for 8 month long interplanetary Martian Journey and touchdown inside Gale Crater. Credit: Ken Kremer

The target features a collection of marked black bars in a wide range of labeled sizes to correlate calibration images to each image taken by Curiosity.

“If it is a whole cliff face, she’ll ask a person to stand in the shot. If it is a view from a meter or so away, she might use a rock hammer. If it is a close-up, as the MAHLI can take, she might pull something small out of her pocket. Like a penny.”

Edgett donated the special Lincoln penny with funds from his own pocket. The 1909 “VDB” cent stems from the very first year that Lincoln pennies were minted and also marks the centennial of President Abraham Lincoln’s birth. The VDB initials of the coin’s designer – Victor David Brenner — are on the reverse side. In mint condition the 1909 Lincoln VDB copper penny has a value of about $20.

The Lincoln penny in this photograph is part of a camera calibration target attached to NASA's Mars rover Curiosity. Credit: NASA/JPL-Caltech

“The penny is on the MAHLI calibration target as a tip of the hat to geologists’ informal practice of placing a coin or other object of known scale in their photographs. A more formal practice is to use an object with scale marked in millimeters, centimeters or meters,” Edgett said. “Of course, this penny can’t be moved around and placed in MAHLI images; it stays affixed to the rover.”

“Everyone in the United States can recognize the penny and immediately know how big it is, and can compare that with the rover hardware and Mars materials in the same image,” Edgett said.

“The public can watch for changes in the penny over the long term on Mars. Will it change color? Will it corrode? Will it get pitted by windblown sand?”

MAHLI’s calibration target also features a display of six patches of pigmented silicone to assist in interpreting color and brightness in the images. Five of them are leftovers from Spirit and Opportunity. The sixth has a fluorescent pigment that glows red when exposed to ultraviolet light, allows checking of an ultraviolet light source on MAHLI. The fluorescent material was donated to the MAHLI team by Spectra Systems, Inc., Providence, R.I.

Three-dimensional calibration of the MSL images will be done using the penny and a stair-stepped area at the bottom of the target.

“The importance of calibration is to allow data acquired on Mars to be compared reliably to data acquired on Earth,” said Mars Science Laboratory Project Scientist John Grotzinger, of the California Institute of Technology, Pasadena.

Curiosity is a 1 ton (900 kg) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots. The science payload is 15 times heavier than the twin robots.

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

NASA could only afford to build one rover this time.

Curiosity MSL location on 27 Feb 2012. Credit: NASA

Curiosity will be NASA’s last Mars rover since the 4th generation ExoMars rover due to liftoff in 2018 was just cancelled by the Obama Administration as part of a deep slash to NASA’s Planetary Science budget.

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life

Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

[/caption]

Barely two weeks into the 8 month journey to the Red Planet, NASA’s Curiosity Mars Science Lab (MSL) rover was commanded to already begin collecting the first science of the mission by measuring the ever present radiation environment in space.

Engineers powered up the MSL Radiation Assessment Detector (RAD) that monitors high-energy atomic and subatomic particles from the sun, distant supernovas and other sources.

RAD is the only one of the car-sized Curiosity’s 10 science instrument that will operate both in space as well as on the Martian surface. It will provide key data that will enable a realistic assessment of the levels of lethal radiation that would confront any potential life forms on Mars as well as Astronauts voyaging between our solar systems planets.

“RAD is the first instrument on Curiosity to be turned on. It will operate throughout the long journey to Mars,” said Don Hassler, RAD’s principal investigator from the Southwest Research Institute in Boulder, Colo.

These initial radiation measurements are focused on illuminating possible health effects facing future human crews residing inside spaceships.


Video Caption: The Radiation Assessment Detector is the first instrument on Curiosity to begin science operations. It was powered up and began collecting data on Dec. 6, 2011. Credit: NASA

“We want to characterize the radiation environment inside the spacecraft because it’s different from the radiation environment measured in interplanetary space,” says Hassler.

RAD is located on the rover which is currently encapsulated within the protective aeroshell. Therefore the instrument is positioned inside the spacecraft, simulating what it would be like for an astronaut with some shielding from the external radiation, measuring energetic particles.

“The radiation hitting the spacecraft is modified by the spacecraft, it gets changed and produces secondary particles. Sometimes those secondary particles can be more damaging than the primary radiation itself.”

“What’s new is that RAD will measure the radiation inside the spacecraft, which will be very similar to the environment that a future astronaut might see on a future mission to Mars.”

Curiosity Mars Science Laboratory (MSL) Spacecraft During Cruise with Navigation Stars. Artist's concept of Curiosity during its cruise phase between launch on Nov. 26, 2011 and final approach to Mars in August 2012. Credit: NASA/JPL-Caltech

Curiosity’s purpose is to search for the ingredients of life and assess whether the rovers landing site at Gale Crater could be or has been favorable for microbial life.

The Martian surface is constantly bombarded by deadly radiation from space. Radiation can destroy the very organic molecules which Curiosity seeks.

“After Curiosity lands, we’ll be taking radiation measurements on the surface of another planet for the first time,” notes Hassler.

RAD was built by a collaboration of the Southwest Research Institute, together with Christian Albrechts University in Kiel, Germany with funding from NASA’s Human Exploration Directorate and Germany’s national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

“What Curiosity might find could be a game-changer about the origin and evolution of life on Earth and elsewhere in the universe,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington. “One thing is certain: The rover’s discoveries will provide critical data that will impact human and robotic planning and research for decades.”

Curiosity was launched from Florida on Nov. 26. After sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars, Curiosity will smash into the atmosphere at 13,000 MPH on August 6, 2012 and pioneer a nail biting and first-of-its-kind precision rocket powered descent system to touchdown inside layered terrain at Gale Crater astride a 3 mile (5 km) high mountain that may have preserved evidence of ancient or extant Martian life.

Miraculously, NASA’s Opportunity Mars rover and onboard instruments and cameras have managed to survive nearly 8 years of brutally harsh Martian radiation and arctic winters.

Curiosity MSL science instruments are state-of-the-art tools for acquiring information about the geology, atmosphere, environmental conditions, and potential biosignatures on Mars. Credit: NASA

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now

[/caption]

Curiosity’s interplanetary injection was spot on ! – following her Nov. 26 blastoff aboard the 2 million pound thrust Atlas V booster from Cape Canaveral in Florida.

For a birds-eye view of where it all started, watch the cool close-up launch video, below taken from within the Atlas pad security fence.

Indeed the launch precision was so good that mission controllers at NASA’s Jet Propulsion Lab in Pasadsena, Calif., have announced they postponed the first of six planned course correction burns for the agency’s newest Mars rover by at least a month. The firing had been planned for some two weeks after liftoff.

Curiosity is merrily sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars that will culminate on August 6, 2012 with a dramatic first-of-its-kind precision rocket powered touchdown inside Gale Crater.

“This was among the most accurate interplanetary injections ever,” said Louis D’Amario of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. He is the mission design and navigation manager for the Mars Science Laboratory.

Video Caption: View from inside the Pad 41 Security Fence at Cape Canaveral. Shot by a Canon 7D still camera during the launch of the Atlas V rocket carrying the MSL Curiosity rover to Mars. Thanks to a sound trigger my camera started firing at three frames per second from just after main engine ignition up until the exhaust plume finally envelops the camera and deadens all sound around it. The frames have been slowed down quite a bit for dramatic effect. Enjoy seeing what it is like for us media personnel who set out our remote cameras for launches at Kennedy Space Center and Cape Canaveral, Florida. Credit: Chase Clark/shuttlephotos.com

As of midday Friday, Dec. 2, the spacecraft had already traveled 10.8 million miles (17.3 million kilometers) and is moving at 7,500 mph (12,000 kilometers per hour) relative to Earth and at 73,800 mph (118,700 kilometers per hour) relative to the sun.

An interesting fact is that engineers deliberately planned the spacecraft’s initial trajectory to miss Mars by about 35,000 miles (56,400 kilometers) so that the Centaur upper stage does not hit Mars by accident. Both Centaur and Curiosity are currently following the same trajectory through the vast void of space and the actual trajectory puts them on course to miss Mars by about 38,000 miles (61,200 kilometers).

The Centaur has not been thoroughly cleaned of earthly microbes in the same way as Curiosity – and therefore cannot be permitted to impact the Martian surface and potentially contaminate the very studies Curiosity seeks to carry out in searching for the “Signs of Life”.

For the 8.5 month voyage to Mars, Curiosity and the rocket powered descent stage are tucked inside an aeroshell and are attached to the huge solar powered cruise stage.

Deceleration of Mars Science Laboratory in Martian Atmosphere
Artist's Concept depicts the interaction of NASA's Mars Science Laboratory spacecraft with the upper atmosphere of Mars during the entry, descent and landing (EDL) of the Curiosity rover onto the Martian surface. EDL begins when the spacecraft reaches the top of Martian atmosphere, about 81 miles (131 kilometers) above the surface of the Gale crater landing area, and ends with the rover safe and sound on the surface of Mars some 7 minutes later. During EDL, the spacecraft decelerates from a velocity of about 13,200 miles per hour (5,900 meters per second) at the top of the atmosphere, to stationary on the surface. Credit: NASA/JPL-Caltech

The cruise stage is rotating at 2.05 rounds per minutes and is continuously generating electric power – currently about 800 watts – from the gleaming solar arrays. It also houses eight miniature hydrazine fueled thrusters. The propellant is stored inside titanium tanks.

Atlas V rocket and Curiosity Mars rover poised at Space Launch Complex 41 at Cape Canaveral, Florida prior to Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking to detect the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

The car sized robot is equipped with a drill and scoop at the end of its 7 ft long robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into two distinct analytical laboratory instruments inside the rover.

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Curiosity Mars Rover Launch Gallery – Photos and Videos

[/caption]

NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.

Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”

The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.

The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.

Curiosity rover bound for Mars punches through Florida clouds. Credit: Ken Kremer
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
A United Launch Alliance Atlas V rocket blasts off from Space Launch Complex-41 at 10:02 p.m. EST with NASA’s Mars Science Lab rover Curiosity. Credit: Pat Corkery/ULA
Credit: NASA/KenThornsley
Curiosity Mars Science Laboratory launches. Credit: ULA


Launch Video – Credit: Matthew Travis/Spacearium

MSL launch. Credit: Julian Leek
MSL launch. Credit: Julian Leek

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Mars Trek – Curiosity Poised to Search for Signs of Life

[/caption]‘Mars Trek – Curiosity’s Search for Undiscovered Life’ has its galaxy wide premiere Saturday morning Nov. 26 at 10:02 a.m. EST – live on NASA TV.

NASA’s quest ‘In Search of Life’ takes a bold leap in less than 12 hours with the Nov. 26 blastoff of “Curiosity”, the most complex and scientifically advanced robotic explorer ever sent to survey the surface of another world. The 103 minute launch window closes at 11:45 a.m. EST.

Curiosity and the United Launch Alliance Atlas V rocket that will thrust her to the Red Planet are poised for liftoff after being rolled out to Space Launch Complex 41 around 8 a.m. this morning under the watchful eyes of ground crews, mission scientists, reporters and photographers.

Universe Today was there – reporting live on all the history making and thrilling events !

Launch day weather remains favorable, with only a 30 percent chance of conditions prohibiting liftoff, said Air Force meteorologists. A low cloud ceiling is the sole concern at this time.

NASA’s Curiosity Mars rover is encapsulated inside the 5 meter payload fairing and loaded atop the Atlas V rocket at Space Launch Complex 41 at Cape Canaveral. Credit: Ken Kremer

The 1.2 million pound booster was pushed 1800 feet along rail tracks by twin diesel powered trackmobiles from the prelaunch preparation and assembly gantry inside the Vertical Integration Facility out to launch pad 41 at Cape Canaveral Air Force Station.

The 197 foot tall booster is equipped with 4 strap on solid rocket motors and generates some 2 million pounds of liftoff thrust according to Vernon Thorp, Atlas Program manager for ULA.

Curiosity is NASA’s next Mars rover and also quite possibly the last US built Mars rover due to severe cuts to NASA planetary science budget.

After an eight and one half month and 354 million mile (570 million km) interplanetary journey, Curiosity will slam into the thin Martian atmosphere at 13,000 MPH and utilize an unprecedented rocket powered pinpoint landing system known as the Sky Crane to touch down with all six wheels deployed inside Gale Crater.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

NASA’s Curiosity Mars rover is rolled out from the Vertical Integration Facility to Launch Pad 41 at Cape Canaveral. Credit: Ken Kremer

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Atlas V and Curiosity poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Immediately after touchdown, the 1 ton rover will transmit telemetry so that engineers back on Earth can assess the rover’s status.

“When we first land we want to ascertain the integrity and health of the vehicle and look at the surrounding terrain, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

“The rover’s mast will be deployed on the second day and we’ll get pictures.”

“Shortly thereafter we will begin our science investigations. The radiation (RAD) and subsurface hydrogen detection (DAN) instruments will start right away since they are passive.”

The rover will drive inside the first week.

“The cameras will be used to select targets. We will go up to the valuable targets. With the cameras and instruments we will determine which ones to sample” said Theisinger.

“Then we’ll deploy the arm which contains scientific equipment and collect samples with a percussion drill. The samples will be injected into the two science instruments for analysis that are located on the rover.”

“The SAM and ChemMin instruments will look for organic molecules and isotope ratios as well as identify and quantify the minerals in the rock and soil samples. It could be up to 2 to 3 months before we take the first samples,” explained Theisinger.

MSL is powered by a nuclear battery and is expected to operate for a minimum of one Martian year, equivalent to 687 days on Earth. NASA hopes the 6 foot tall rover will last alot longer.

Curiosity atop Atlas V poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life

[/caption]

NASA’s Curiosity Mars rover, the most technologically complex and scientifically capable robot built by humans to explore the surface of another celestial body, is poised to liftoff on Nov. 26 and will enable a quantum leap in mankind’s pursuit of Martian microbes and signatures of life beyond Earth.

“The Mars Science Lab and the rover Curiosity is ‘locked and loaded’, ready for final countdown on Saturday’s launch to Mars,” said Colleen Hartman, assistant associate administrator in NASA’s Science Mission Directorate, at a pre-launch media briefing at the Kennedy Space Center (KSC).

The $2.5 Billion robotic explorer remains on track for an on time liftoff aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. on Nov. 26 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

NASA managers and spacecraft contractors gave the “Go-Ahead” for proceeding towards Saturday’s launch at the Launch Readiness Review on Wednesday, Nov. 23. The next milestone is to move the Atlas V rocket 1800 ft. from its preparation and assembly gantry inside the Vertical Integration Facility at the Cape.

“We plan on rolling the vehicle out of the Vertical Integration Facility on Friday morning [Nov. 25] ,” said NASA Launch Director Omar Baez at the briefing. “We should be on the way to the pad by 8 a.m.”

The launch window on Nov. 26 is open until 11:14 a.m. and the current weather prognosis is favorable with chances rated at 70 percent “GO”.

“The final launch rehearsal – using the real vehicle ! – went perfectly, said NASA Mars manager Rob Manning, in an exclusive interview with Universe Today. Manning is the Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“I was happy.”

“The folks at KSCs Payload Handling Facility and at JPL’s cruise mission support area (CMSA) – normally a boisterous bunch – worked quietly and professionally thru to T-4 minutes and a simulated fake hold followed by a restart and a recycle (shut down) due to a sail boat floating too close to the range,” Manning told me.

Curiosity rover - Engineering support team working at consoles at JPL. Credit: Rob Manning

Readers may recall that NASA’s JUNO Jupiter orbiter launch in August was delayed by an hour when an errant boat sailed into the Atlantic Ocean exclusion zone.

“This rover, Curiosity rover, is really a rover on steroids. It’s an order of magnitude more capable than anything we have ever launched to any planet in the solar system,” said Hartman.

“It will go longer, it will discover more than we can possibly imagine.”

Curiosity rover explores inside Gale Crater after landing in August 2012. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. Credit: NASA, JPL-Caltech

Curiosity is locked atop the powerful Alliance Atlas V rocket that will propel the 1 ton behemoth on an eight and one half month interplanetary cruise from the alligator filled swamps of the Florida Space Coast to a layered mountain inside Gale Crater on Mars where liquid water once flowed and Martian microbes may once have thrived.

Curiosity is loaded inside the largest aeroshell ever built and that will shield her from the extreme temperatures and intense buffeting friction she’ll suffer while plummeting into the Martian atmosphere at 13,000 MPH (5,900 m/s) upon arrival at the Red Planet in August 2012.

The Curiosity Mars Science Lab (MSL) rover is the most ambitious mission ever sent to Mars and is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times as much as its predecessor’s science payloads.

Curiosity measures 3 meters (10 ft) in length and weighs 900 kg (2000 pounds), nearly twice the size and five times as heavy as NASA’s prior set of twin robogirls – Spirit and Opportunity.

The science team selected Gale crater as the landing site because it exhibits exposures of clays and hydrated sulfate minerals that formed in the presence of liquid water billions of years ago, indicating a wet history on ancient Mars that could potentially support the genesis of microbial life forms. Water is an essential prerequisite for life as we know it.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor.

Oblique View of Gale Crater, Mars, with Vertical Exaggeration
Gale Crater, where the rover Curiosity of NASA's Mars Science Laboratory mission will land in August 2012, contains a mountain rising from the crater floor. This oblique view of Gale Crater, looking toward the southeast, is an artist's impression using two-fold vertical exaggeration to emphasize the area's topography. Curiosity's landing site is on the crater floor northeast of the mountain. The crater's diameter is 96 miles (154 kilometers). The image combines elevation data from the High Resolution Stereo Camera on the European Space Agency's Mars Express orbiter, image data from the Context Camera on NASA's Mars Reconnaissance Orbiter, and color information from Viking Orbiter imagery.
Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS

The car sized rover is being targeted with a first of its kind precision rocket powered descent system to touchdown inside a landing ellipse some 20 by 25 kilometers (12.4 miles by 15.5 miles) wide and astride the towering mountain at a location in the northern region of Gale.

Curiosity’s goal is to search the crater floor and nearby mountain – half the height of Mt. Everest – for the ingredients of life, including water and the organic molecules that we are all composed of.

The robot will deploy its 7 foot long arm to collect soil and rock samples to assess their composition and determine if any organic materials are present – organics have not previously been detected on Mars.

Curiosity will also vaporize rocks with a laser to determine which elements are present, look for subsurface water in the form of hydrogen, and assess the weather and radiation environments

“After the rocket powered descent, the Sky-Crane maneuver deploys the rover and we land on the mobility system, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

The rover will rover about 20 kilometers in the first year. Curiosity has no life limiting constraints. The longevity depends on the health of the rovers components and instruments.

“We’ve had our normal challenges and hiccups that we have in these kinds of major operations, but things have gone extremely smoothly and we’re fully prepared to go on Saturday morning. We hope that the weather cooperates, said Theisinger

Missions to Mars are exceedingly difficult and have been a death trap for many orbiters and landers.

“Mars really is the Bermuda Triangle of the solar system,” said Hartman. “It’s the ‘death planet,’ and the United States of America is the only nation in the world that has ever landed and driven robotic explorers on the surface of Mars. And now we’re set to do it again.”

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

NASA’s Curiosity Set to Search for Signs of Martian Life

[/caption]

Nov 19 Update: MSL launch delayed 24 h to Nov. 26 – details later

In just 7 days, Earth’s most advanced robotic roving emissary will liftoff from Florida on a fantastic journey to the Red Planet and the search for extraterrestrial life will take a quantum leap forward. Scientists are thrilled that the noble endeavor of the rover Curiosity is finally at hand after seven years of painstaking work.

NASA’s Curiosity Mars Science Laboratory (MSL) rover is vastly more capable than any other roving vehicle ever sent to the surface of another celestial body. Mars is the most Earth-like planet in our Solar System and a prime target to investigate for the genesis of life beyond our home planet.

Curiosity is all buttoned up inside an aeroshell at a seaside launch pad atop an Atlas V rocket and final preparations are underway at the Florida Space Coast leading to a morning liftoff at 10:25 a.m. EST on Nov. 25, the day after the Thanksgiving holiday.

MSL is ready to go,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington, at a media briefing. “It’s a momentous occasion. We’re just thrilled that we’re at this point.”

“Curiosity is ‘Seeking the Signs of Life’, but is not a life detection mission. It is equipped with state-of-the-art science instruments.”

This oblique view of Gale Crater shows the landing site and the mound of layered rocks that NASA's Mars Science Laboratory will investigate. The landing site is in the smooth area in front of the mound. Image credit: NASA/JPL-Caltech/ASU/UA

“It’s not your father’s rover. It’s a 2000 pound machine that’s over 6 feet tall – truly a wonder of engineering,” McCuistion stated.

“Curiosity is the best of US imagination and US innovation. And we have partners from France, Canada, Germany, Russia and Spain.”

“Curiosity sits squarely in the middle of our two decade long strategic plan of Mars exploration and will bridge the gap scientifically and technically from the past decade to the next decade.”

Mars Science Laboratory builds upon the improved understanding about Mars gained from current and recent missions,” said McCuistion. “This mission advances technologies and science that will move us toward missions to return samples from and eventually send humans to Mars.”

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

The car sized rover is due to arrive at Mars in August 2012 and land inside Gale Crater near the base of a towering and layered Martian mountain, some 5 kilometers (3 miles) high. Gale Crater is 154 km (96 mi) in diameter.

The landing site was chosen because it offers multiple locations with different types of geologic environments that are potentially habitable and may have preserved evidence about the development of microbial life, if it ever formed.

Gale Crater is believed to contain clays and hydrated minerals that formed in liquid water eons ago and over billions of years in time. Water is an essential prerequisite for the genesis of life as we know it.

NASA's most advanced mobile robotic laboratory, the Mars Science Laboratory carrying the Curiosity rover, is set to launch atop an Atlas V rocket at 10:25 a.m. EST on Nov. 25 on a mission to examine one of the most intriguing areas on Mars at Gale crater. Credit: NASA

The one ton robot is a behemoth, measuring 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as NASA’s prior set of twin rovers – Spirit and Opportunity.

Curiosity is equipped with a powerful array of 10 science instruments weighing 15 times as much as its predecessor’s science payloads. The rover can search for the ingredients of life including water and the organic molecules that we are all made of.

Curiosity will embark on a minimum two year expedition across the craters highly varied terrain, collecting and analyzing rock and soil samples in a way that’s never been done before beyond Earth.

Eventually our emissary will approach the foothills and climb the Martian mountain in search of hitherto untouched minerals and habitable environments that could potentially have supported life’s genesis.

With each science mission, NASA seeks to take a leap forward in capability and technology to vastly enhance the science return – not just to repeat past missions. MSL is no exception.

Watch a dramatic action packed animation of the landing and exploration here:

Curiosity was designed at the start to be vastly more capable than any prior surface robotic explorer, said Ashwin Vasavada, Curiosity’s Deputy Project Scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif

“This is a Mars scientist’s dream machine.”

Therefore this mission uses new technologies to enable the landing of a heavier science payload and is inherently risky. The one ton weight is far too heavy to employ the air-bag cushioned touchdown system used for Spirit and Opportunity and will use a new landing method instead.

Curiosity will pioneer an unprecedented new precision landing technique as it dives through the Martian atmosphere named the “sky-crane”. In the final stages of touchdown, a rocket-powered descent stage will fire thusters to slow the descent and then lower the rover on a tether like a kind of sky-crane and then safely set Curiosity down onto the ground.

NASA has about three weeks to get Curiosity off the ground from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida before the planetary alignments change and the launch window to Mars closes for another 26 months.

“Preparations are on track for launching at our first opportunity,” said Pete Theisinger, MSL project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “If weather or other factors prevent launching then, we have more opportunities through Dec. 18.”

Mars Science Laboratory Briefing. Doug McCuistion, Mars program director, left, Ashwin Vasavada, MSL deputy project scientist, and Pete Theisinger, MSL project manager, share a laugh during a news briefing, Nov. 10, 2011, at NASA Headquarters in Washington. Curiosity, NASA's most advanced mobile robotic laboratory, will examine one of the most intriguing areas on Mars. The Mars Science Laboratory (MSL) mission is set for launch from Florida's Space Coast on Nov. 25 and is scheduled to land on the Red Planet in August 2012 where it will examine the Gale Crater during a nearly two-year prime mission. Credit: NASA/Paul E. Alers

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 25 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats

[/caption]

Only time now stands in the way of Curiosity’s long awaited date with the Red Planet. NASA’s next, and perhaps last Mars rover was transported to the launch pad at Cape Canaveral Air Force Station and then hoisted on top of the mighty Atlas V rocket that will propel her on a 10 month interplanetary journey to Mars to seek out the potential habitats of Extraterrestrial life.

In less than three weeks on November 25 – the day after Thanksgiving – the Curiosity Mars Science Laboratory (MSL) rover will soar to space aboard the Atlas V booster. Touchdown astride a layered mountain at the Gale Crater landing site is set for August 2012.

Collage showing transport of Curiosity inside nose cone to Space Launch Complex 41 at Cape Canaveral, Florida. Credit: NASA

The $2.5 Billion rover must liftoff by Dec. 18 at the latest, when the launch window to Mars closes for another 26 months. Any delay would cost hundreds of millions of dollars.

Curiosity represents a quantum leap in science capabilities and is by far the most advanced robotic emissary sent to the surface of another celestial body. MSL will operate for a minimum of one Martian year, equivalent to 687 days on earth.

After years of meticulous design work and robotic construction by dedicated scientists and engineers at NASA’s Jet Propulsion Laboratory in California and months of vigilant final assembly and preflight processing at the Payload Hazardous Servicing Facility (PHSF) at NASA’s Kennedy Space Center in Florida, Curiosity was finally moved the last few miles (km) she’ll ever travel on Earth – in the dead of night – to Space Launch Complex 41 at the Cape.

Curiosity inside the Nose Cone to Mars. In the Payload Hazardous Servicing Facility at the Kennedy Space Center in Florida, the Atlas V rocket's payload fairing containing the Mars Science Laboratory (MSL) spacecraft stands securely atop the transporter that will carry it to Space Launch Complex 41. Credit: NASA/Kim Shiflett

The robo behemoth was tucked inside her protective aeroshell Mars entry capsule and clamshell-like nose cone, gingerly loaded onto the payload transporter inside the PHSF and arrived – after a careful drive – at Pad 41 at about 4:35 a.m. EDT on Nov. 3. The move was delayed one day by high winds at the Cape.

Employees at Space Launch Complex 41 keep watch as the payload fairing containing NASA's Mars Science Laboratory (MSL) spacecraft is lifted up the side of the Vertical Integration Facility. Credit: NASA/Kim Shiflett

Teams from rocket builder United Launch Alliance then hoisted MSL by crane on top of the Atlas V rocket already assembled inside the launch gantry known as the Vertical Integration Facility, or VIF, and bolted it to the venerable Centaur upper stage. Technicians also attached umbilicals for mechanical, electrical and gaseous connections.

Curiosity’s purpose is to search for evidence of habitats that could ever have supported microbial life on Mars and determine whether the ingredients of life exist on Mars today in the form of organic molecules – the building blocks of life.

We are all made of organic molecules – which is one of the essential requirements for the genesis of life along with water and an energy source. Mars harbors lots of water and is replete with energy sources, but confirmation of organics is what’s lacking.

Curiosity, inside the payload fairing at Pad 41, has been attached to a lifting device in order to be raised and attached to the Atlas V rocket inside the Vertical Integration Facility. The fairing will protect the payload from heat and aerodynamic pressure generated during ascent. Credit: NASA/Kim Shiflett

The Atlas V will launch in the configuration known as Atlas 541. The 4 indicates a total of four solid rocket motors (SRM) are attached to the base of the first stage. The 5 indicates a five meter diameter payload fairing. The 1 indicates use of a single engine Centaur upper stage.

One of the last but critical jobs remaining at the pad is installation of Curiosity’s MMRTG (Multi-Mission Radioisotope Thermoelectric Generator) power source about a week before launch around Nov. 17. Technicians will install the MMRTG through small portholes on the side of the payload fairing and aeroshell.

The nuclear power source will significantly enhance the driving range, scientific capability and working lifetime of the six wheeled rover compared to other solar powered landed surface explorers like Pathfinder, Spirit, Opportunity, Phoenix and Phobos-Grunt.

The minivan sized rover measures three meters in length, roughly twice the size of the MER rovers; Spirit and Opportunity. MSL is equipped with 10 science instruments for a minimum two year expedition across Gale crater. The science payload weighs ten times more than any prior Mars rover mission.

The Atlas V rocket and Curiosity will roll out to the launch pad on Wednedsay, November 23, the day before Thanksgiving.

Meanwhile, Russia’s Phobos-Grunt mission to Mars and Phobos is on target to blast off on November 9, Moscow time [Nov 8, US time].

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

Read Ken’s continuing features about Curiosity starting here:
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff